[{"department":[{"tree":[{"_id":"99"},{"_id":"10"},{"_id":"34"},{"_id":"44"},{"_id":"43"}],"_id":"101"}],"page":"235-268","citation":{"short":"I. Melbourne, M. Dellnitz, Mathematical Proceedings of the Cambridge Philosophical Society (1993) 235–268.","bibtex":"@article{Melbourne_Dellnitz_1993, title={Normal forms for linear Hamiltonian vector fields commuting with the action of a compact Lie group}, DOI={10.1017/s0305004100071577}, journal={Mathematical Proceedings of the Cambridge Philosophical Society}, author={Melbourne, Ian and Dellnitz, Michael}, year={1993}, pages={235–268} }","chicago":"Melbourne, Ian, and Michael Dellnitz. “Normal Forms for Linear Hamiltonian Vector Fields Commuting with the Action of a Compact Lie Group.” *Mathematical Proceedings of the Cambridge Philosophical Society*, 1993, 235–68. https://doi.org/10.1017/s0305004100071577.","ieee":"I. Melbourne and M. Dellnitz, “Normal forms for linear Hamiltonian vector fields commuting with the action of a compact Lie group,” *Mathematical Proceedings of the Cambridge Philosophical Society*, pp. 235–268, 1993.","mla":"Melbourne, Ian, and Michael Dellnitz. “Normal Forms for Linear Hamiltonian Vector Fields Commuting with the Action of a Compact Lie Group.” *Mathematical Proceedings of the Cambridge Philosophical Society*, 1993, pp. 235–68, doi:10.1017/s0305004100071577.","apa":"Melbourne, I., & Dellnitz, M. (1993). Normal forms for linear Hamiltonian vector fields commuting with the action of a compact Lie group. *Mathematical Proceedings of the Cambridge Philosophical Society*, 235–268. https://doi.org/10.1017/s0305004100071577"},"user_id":"15701","creator":{"login":"mkalle","id":"15701"},"date_created":"2020-04-16T08:31:40Z","dini_type":"doc-type:article","status":"public","_version":3,"type":"journal_article","_id":"16633","publication_status":"published","abstract":[{"lang":"eng"}],"dc":{"source":["Melbourne I, Dellnitz M. Normal forms for linear Hamiltonian vector fields commuting with the action of a compact Lie group. *Mathematical Proceedings of the Cambridge Philosophical Society*. 1993:235-268. doi:10.1017/s0305004100071577"],"description":["AbstractWe obtain normal forms for infinitesimally symplectic matrices (or linear Hamiltonian vector fields) that commute with the symplectic action of a compact Lie group of symmetries. In doing so we extend Williamson's theorem on normal forms when there is no symmetry present.Using standard representation-theoretic results the symmetry can be factored out and we reduce to finding normal forms over a real division ring. There are three real division rings consisting of the real, complex and quaternionic numbers. Of these, only the real case is covered in Williamson's original work."],"identifier":["https://ris.uni-paderborn.de/record/16633"],"relation":["info:eu-repo/semantics/altIdentifier/doi/10.1017/s0305004100071577","info:eu-repo/semantics/altIdentifier/issn/0305-0041","info:eu-repo/semantics/altIdentifier/issn/1469-8064"],"rights":["info:eu-repo/semantics/closedAccess"],"title":["Normal forms for linear Hamiltonian vector fields commuting with the action of a compact Lie group"],"language":["eng"],"type":["info:eu-repo/semantics/article","doc-type:article","text"],"creator":["Melbourne, Ian","Dellnitz, Michael"],"date":["1993"]},"publication_identifier":{"issn":[]},"date_updated":"2020-05-19T07:15:35Z","publication":"Mathematical Proceedings of the Cambridge Philosophical Society","uri_base":"https://ris.uni-paderborn.de","language":[{}],"author":[{"first_name":"Ian","last_name":"Melbourne"},{"last_name":"Dellnitz","first_name":"Michael"}]}]