@article{21, abstract = {{We address the general mathematical problem of computing the inverse p-th root of a given matrix in an efficient way. A new method to construct iteration functions that allow calculating arbitrary p-th roots and their inverses of symmetric positive definite matrices is presented. We show that the order of convergence is at least quadratic and that adaptively adjusting a parameter q always leads to an even faster convergence. In this way, a better performance than with previously known iteration schemes is achieved. The efficiency of the iterative functions is demonstrated for various matrices with different densities, condition numbers and spectral radii.}}, author = {{Richters, Dorothee and Lass, Michael and Walther, Andrea and Plessl, Christian and Kühne, Thomas}}, journal = {{Communications in Computational Physics}}, number = {{2}}, pages = {{564--585}}, publisher = {{Global Science Press}}, title = {{{A General Algorithm to Calculate the Inverse Principal p-th Root of Symmetric Positive Definite Matrices}}}, doi = {{10.4208/cicp.OA-2018-0053}}, volume = {{25}}, year = {{2019}}, }