{"publication":"OSA Quantum 2.0 Conference","type":"conference","date_updated":"2022-10-25T07:41:15Z","language":[{"iso":"eng"}],"department":[{"_id":"61"},{"_id":"230"},{"_id":"429"},{"_id":"15"}],"publication_identifier":{"isbn":["9781943580811"]},"title":"Towards Semiconductor-Superconductor-Crystal Hybrid Integration for Quantum Photonics","_id":"21719","citation":{"bibtex":"@inproceedings{Protte_Ebers_Hammer_Höpker_Albert_Quiring_Meier_Förstner_Silberhorn_Bartley_2020, title={Towards Semiconductor-Superconductor-Crystal Hybrid Integration for Quantum Photonics}, DOI={10.1364/quantum.2020.qth7a.8}, number={QTh7A.8}, booktitle={OSA Quantum 2.0 Conference}, author={Protte, Maximilian and Ebers, Lena and Hammer, Manfred and Höpker, Jan Philipp and Albert, Maximilian and Quiring, Viktor and Meier, Cedrik and Förstner, Jens and Silberhorn, Christine and Bartley, Tim}, year={2020} }","chicago":"Protte, Maximilian, Lena Ebers, Manfred Hammer, Jan Philipp Höpker, Maximilian Albert, Viktor Quiring, Cedrik Meier, Jens Förstner, Christine Silberhorn, and Tim Bartley. “Towards Semiconductor-Superconductor-Crystal Hybrid Integration for Quantum Photonics.” In OSA Quantum 2.0 Conference, 2020. https://doi.org/10.1364/quantum.2020.qth7a.8.","short":"M. Protte, L. Ebers, M. Hammer, J.P. Höpker, M. Albert, V. Quiring, C. Meier, J. Förstner, C. Silberhorn, T. Bartley, in: OSA Quantum 2.0 Conference, 2020.","ieee":"M. Protte et al., “Towards Semiconductor-Superconductor-Crystal Hybrid Integration for Quantum Photonics,” 2020, doi: 10.1364/quantum.2020.qth7a.8.","ama":"Protte M, Ebers L, Hammer M, et al. Towards Semiconductor-Superconductor-Crystal Hybrid Integration for Quantum Photonics. In: OSA Quantum 2.0 Conference. ; 2020. doi:10.1364/quantum.2020.qth7a.8","mla":"Protte, Maximilian, et al. “Towards Semiconductor-Superconductor-Crystal Hybrid Integration for Quantum Photonics.” OSA Quantum 2.0 Conference, QTh7A.8, 2020, doi:10.1364/quantum.2020.qth7a.8.","apa":"Protte, M., Ebers, L., Hammer, M., Höpker, J. P., Albert, M., Quiring, V., Meier, C., Förstner, J., Silberhorn, C., & Bartley, T. (2020). Towards Semiconductor-Superconductor-Crystal Hybrid Integration for Quantum Photonics. OSA Quantum 2.0 Conference, Article QTh7A.8. https://doi.org/10.1364/quantum.2020.qth7a.8"},"user_id":"49683","status":"public","year":"2020","author":[{"first_name":"Maximilian","id":"46170","last_name":"Protte","full_name":"Protte, Maximilian"},{"first_name":"Lena","full_name":"Ebers, Lena","last_name":"Ebers","id":"40428"},{"first_name":"Manfred","orcid":"0000-0002-6331-9348","full_name":"Hammer, Manfred","id":"48077","last_name":"Hammer"},{"first_name":"Jan Philipp","full_name":"Höpker, Jan Philipp","last_name":"Höpker","id":"33913"},{"full_name":"Albert, Maximilian","last_name":"Albert","first_name":"Maximilian"},{"first_name":"Viktor","full_name":"Quiring, Viktor","last_name":"Quiring"},{"id":"20798","last_name":"Meier","full_name":"Meier, Cedrik","first_name":"Cedrik","orcid":"https://orcid.org/0000-0002-3787-3572"},{"id":"158","last_name":"Förstner","full_name":"Förstner, Jens","first_name":"Jens","orcid":"0000-0001-7059-9862"},{"id":"26263","last_name":"Silberhorn","full_name":"Silberhorn, Christine","first_name":"Christine"},{"full_name":"Bartley, Tim","id":"49683","last_name":"Bartley","first_name":"Tim"}],"doi":"10.1364/quantum.2020.qth7a.8","article_number":"QTh7A.8","file":[{"access_level":"closed","content_type":"application/pdf","relation":"main_file","date_created":"2021-04-22T15:58:52Z","date_updated":"2021-04-22T15:58:52Z","file_size":1704199,"creator":"fossie","success":1,"file_id":"21720","file_name":"Quantum2.0-Towards SSC hybrid integration for quantum photonics[4936].pdf"}],"ddc":["530"],"publication_status":"published","file_date_updated":"2021-04-22T15:58:52Z","keyword":["tet_topic_waveguide"],"date_created":"2021-04-22T15:56:45Z","has_accepted_license":"1","abstract":[{"lang":"eng","text":"We fabricate silicon tapers to increase the mode overlap of superconducting detectors on Ti:LiNbO3 waveguides. Mode images show a reduction in mode size from 6 µm to 2 µm FWHM, agreeing with beam propagation simulations."}]}