Towards electronic structure-based ab-initio molecular dynamics simulations with hundreds of millions of atoms

R. Schade, T. Kenter, H. Elgabarty, M. Lass, O. Schütt, A. Lazzaro, H. Pabst, S. Mohr, J. Hutter, T. Kühne, C. Plessl, Parallel Computing 111 (2022).

Download
No fulltext has been uploaded.
Journal Article | Published | English
Author
Schade, RobertLibreCat; Kenter, TobiasLibreCat; Elgabarty, Hossam; Lass, MichaelLibreCat ; Schütt, Ole; Lazzaro, Alfio; Pabst, Hans; Mohr, Stephan; Hutter, Jürg; Kühne, ThomasLibreCat; Plessl, ChristianLibreCat
Abstract
We push the boundaries of electronic structure-based ab-initio molecular dynamics (AIMD) beyond 100 million atoms. This scale is otherwise barely reachable with classical force-field methods or novel neural network and machine learning potentials. We achieve this breakthrough by combining innovations in linear-scaling AIMD, efficient and approximate sparse linear algebra, low and mixed-precision floating-point computation on GPUs, and a compensation scheme for the errors introduced by numerical approximations. The core of our work is the non-orthogonalized local submatrix method (NOLSM), which scales very favorably to massively parallel computing systems and translates large sparse matrix operations into highly parallel, dense matrix operations that are ideally suited to hardware accelerators. We demonstrate that the NOLSM method, which is at the center point of each AIMD step, is able to achieve a sustained performance of 324 PFLOP/s in mixed FP16/FP32 precision corresponding to an efficiency of 67.7% when running on 1536 NVIDIA A100 GPUs.
Publishing Year
Journal Title
Parallel Computing
Volume
111
Article Number
102920
ISSN
LibreCat-ID

Cite this

Schade R, Kenter T, Elgabarty H, et al. Towards electronic structure-based ab-initio molecular dynamics simulations with hundreds of millions of atoms. Parallel Computing. 2022;111. doi:10.1016/j.parco.2022.102920
Schade, R., Kenter, T., Elgabarty, H., Lass, M., Schütt, O., Lazzaro, A., Pabst, H., Mohr, S., Hutter, J., Kühne, T., & Plessl, C. (2022). Towards electronic structure-based ab-initio molecular dynamics simulations with hundreds of millions of atoms. Parallel Computing, 111, Article 102920. https://doi.org/10.1016/j.parco.2022.102920
@article{Schade_Kenter_Elgabarty_Lass_Schütt_Lazzaro_Pabst_Mohr_Hutter_Kühne_et al._2022, title={Towards electronic structure-based ab-initio molecular dynamics simulations with hundreds of millions of atoms}, volume={111}, DOI={10.1016/j.parco.2022.102920}, number={102920}, journal={Parallel Computing}, publisher={Elsevier}, author={Schade, Robert and Kenter, Tobias and Elgabarty, Hossam and Lass, Michael and Schütt, Ole and Lazzaro, Alfio and Pabst, Hans and Mohr, Stephan and Hutter, Jürg and Kühne, Thomas and et al.}, year={2022} }
Schade, Robert, Tobias Kenter, Hossam Elgabarty, Michael Lass, Ole Schütt, Alfio Lazzaro, Hans Pabst, et al. “Towards Electronic Structure-Based Ab-Initio Molecular Dynamics Simulations with Hundreds of Millions of Atoms.” Parallel Computing 111 (2022). https://doi.org/10.1016/j.parco.2022.102920.
R. Schade et al., “Towards electronic structure-based ab-initio molecular dynamics simulations with hundreds of millions of atoms,” Parallel Computing, vol. 111, Art. no. 102920, 2022, doi: 10.1016/j.parco.2022.102920.
Schade, Robert, et al. “Towards Electronic Structure-Based Ab-Initio Molecular Dynamics Simulations with Hundreds of Millions of Atoms.” Parallel Computing, vol. 111, 102920, Elsevier, 2022, doi:10.1016/j.parco.2022.102920.

Export

Marked Publications

Open Data LibreCat

Sources

arXiv 2104.08245

Search this title in

Google Scholar