@article{26077, abstract = {{Nonlinear SU(1,1) interferometers are fruitful and promising tools for spectral engineering and precise measurements with phase sensitivity below the classical bound. Such interferometers have been successfully realized in bulk and fiber-based configurations. However, rapidly developing integrated technologies provide higher efficiencies, smaller footprints, and pave the way to quantum-enhanced on-chip interferometry. In this work, we theoretically realised an integrated architecture of the multimode SU(1,1) interferometer which can be applied to various integrated platforms. The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump. Based on the potassium titanyl phosphate (KTP) platform, we show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit. In addition, we discuss the fundamental difference between single-mode and highly multimode SU(1,1) interferometers in the properties of phase sensitivity and its limits. Finally, we explore how to improve the phase sensitivity by filtering the output radiation and using different seeding states in different modes with various detection strategies.}}, author = {{Ferreri, Alessandro and Santandrea, Matteo and Stefszky, Michael and Luo, Kai Hong and Herrmann, Harald and Silberhorn, Christine and Sharapova, Polina R.}}, issn = {{2521-327X}}, journal = {{Quantum}}, title = {{{Spectrally multimode integrated SU(1,1) interferometer}}}, doi = {{10.22331/q-2021-05-27-461}}, year = {{2021}}, }