@article{29780,
abstract = {{A central tenet of theoretical cryptography is the study of the minimal assumptions required to implement a given cryptographic primitive. One such primitive is the one-time memory (OTM), introduced by Goldwasser, Kalai, and Rothblum [CRYPTO 2008], which is a classical functionality modeled after a non-interactive 1-out-of-2 oblivious transfer, and which is complete for one-time classical and quantum programs. It is known that secure OTMs do not exist in the standard model in both the classical and quantum settings. Here, we propose a scheme for using quantum information, together with the assumption of stateless (i.e., reusable) hardware tokens, to build statistically secure OTMs. Via the semidefinite programming-based quantum games framework of Gutoski and Watrous [STOC 2007], we prove security for a malicious receiver making at most 0.114n adaptive queries to the token (for n the key size), in the quantum universal composability framework, but leave open the question of security against a polynomial amount of queries. Compared to alternative schemes derived from the literature on quantum money, our scheme is technologically simple since it is of the "prepare-and-measure" type. We also give two impossibility results showing certain assumptions in our scheme cannot be relaxed.}},
author = {{Broadbent, Anne and Gharibian, Sevag and Zhou, Hong-Sheng}},
issn = {{2521-327X}},
journal = {{Quantum}},
keywords = {{Physics and Astronomy (miscellaneous), Atomic and Molecular Physics, and Optics}},
publisher = {{Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften}},
title = {{{Towards Quantum One-Time Memories from Stateless Hardware}}},
doi = {{10.22331/q-2021-04-08-429}},
volume = {{5}},
year = {{2021}},
}