@article{30210, abstract = {{Lithium niobate on insulator (LNOI) has a great potential for photonic integrated circuits, providing substantial versatility in design of various integrated components. To properly use these components in the implementation of different quantum protocols, photons with different properties are required. In this paper, we theoretically demonstrate a flexible source of correlated photons built on the LNOI waveguide of a special geometry. This source is based on the parametric down-conversion (PDC) process, in which the signal and idler photons are generated at the telecom wavelength and have different spatial profiles and polarizations, but the same group velocities. Distinguishability in polarizations and spatial profiles facilitates the routing and manipulating individual photons, while the equality of their group velocities leads to the absence of temporal walk-off between photons. We show how the spectral properties of the generated photons and the number of their frequency modes can be controlled depending on the pump characteristics and the waveguide length. Finally, we discuss special regimes, in which narrowband light with strong frequency correlations and polarization-entangled Bell states are generated at the telecom wavelength.}}, author = {{Ebers, Lena and Ferreri, Alessandro and Hammer, Manfred and Albert, Maximilian and Meier, Cedrik and Förstner, Jens and Sharapova, Polina R.}}, issn = {{2515-7647}}, journal = {{Journal of Physics: Photonics}}, keywords = {{tet_topic_waveguide}}, pages = {{025001}}, publisher = {{IOP Publishing}}, title = {{{Flexible source of correlated photons based on LNOI rib waveguides}}}, doi = {{10.1088/2515-7647/ac5a5b}}, volume = {{4}}, year = {{2022}}, }