article
Higher rank quantum-classical correspondence
Joachim
Hilgert
author 220
Tobias
Weich
author 491780000-0002-9648-6919
Lasse Lennart
Wolf
author 45027
10
department
548
department
91
department
For a compact Riemannian locally symmetric space $\Gamma\backslash G/K$ of
arbitrary rank we determine the location of certain Ruelle-Taylor resonances
for the Weyl chamber action. We provide a Weyl-lower bound on an appropriate
counting function for the Ruelle-Taylor resonances and establish a spectral gap
which is uniform in $\Gamma$ if $G/K$ is irreducible of higher rank. This is
achieved by proving a quantum-classical correspondence, i.e. a
1:1-correspondence between horocyclically invariant Ruelle-Taylor resonant
states and joint eigenfunctions of the algebra of invariant differential
operators on $G/K$.
MSP2023
eng
Analysis & PDE
2103.05667
16102241–2265
@article{Hilgert_Weich_Wolf_2023, title={Higher rank quantum-classical correspondence}, volume={16}, number={10}, journal={Analysis & PDE}, publisher={MSP}, author={Hilgert, Joachim and Weich, Tobias and Wolf, Lasse Lennart}, year={2023}, pages={2241–2265} }
Hilgert, Joachim, Tobias Weich, and Lasse Lennart Wolf. “Higher Rank Quantum-Classical Correspondence.” <i>Analysis & PDE</i> 16, no. 10 (2023): 2241–2265.
Hilgert J, Weich T, Wolf LL. Higher rank quantum-classical correspondence. <i>Analysis & PDE</i>. 2023;16(10):2241–2265.
J. Hilgert, T. Weich, and L. L. Wolf, “Higher rank quantum-classical correspondence,” <i>Analysis & PDE</i>, vol. 16, no. 10, pp. 2241–2265, 2023.
J. Hilgert, T. Weich, L.L. Wolf, Analysis & PDE 16 (2023) 2241–2265.
Hilgert, J., Weich, T., & Wolf, L. L. (2023). Higher rank quantum-classical correspondence. <i>Analysis & PDE</i>, <i>16</i>(10), 2241–2265.
Hilgert, Joachim, et al. “Higher Rank Quantum-Classical Correspondence.” <i>Analysis & PDE</i>, vol. 16, no. 10, MSP, 2023, pp. 2241–2265.
311902022-05-11T10:41:35Z2024-02-19T06:29:52Z