preprint
Spectral Asymptotics for Kinetic Brownian Motion on Hyperbolic Surfaces
Martin
Kolb
author
Tobias
Weich
author 491780000-0002-9648-6919
Lasse Lennart
Wolf
author 45027
548
department
The kinetic Brownian motion on the sphere bundle of a Riemannian manifold $M$
is a stochastic process that models a random perturbation of the geodesic flow.
If $M$ is a orientable compact constant negatively curved surface, we show that
in the limit of infinitely large perturbation the $L^2$-spectrum of the
infinitesimal generator of a time rescaled version of the process converges to
the Laplace spectrum of the base manifold. In addition, we give explicit error
estimates for the convergence to equilibrium. The proofs are based on
noncommutative harmonic analysis of $SL_2(\mathbb{R})$.
2019
eng
arXiv:1909.06183
1909.06183
Kolb, Martin, Tobias Weich, and Lasse Lennart Wolf. “Spectral Asymptotics for Kinetic Brownian Motion on Hyperbolic Surfaces.” <i>ArXiv:1909.06183</i>, 2019.
Kolb, M., Weich, T., & Wolf, L. L. (2019). Spectral Asymptotics for Kinetic Brownian Motion on Hyperbolic Surfaces. In <i>arXiv:1909.06183</i>.
M. Kolb, T. Weich, L.L. Wolf, ArXiv:1909.06183 (2019).
M. Kolb, T. Weich, and L. L. Wolf, “Spectral Asymptotics for Kinetic Brownian Motion on Hyperbolic Surfaces,” <i>arXiv:1909.06183</i>. 2019.
Kolb M, Weich T, Wolf LL. Spectral Asymptotics for Kinetic Brownian Motion on Hyperbolic Surfaces. <i>arXiv:190906183</i>. Published online 2019.
Kolb, Martin, et al. “Spectral Asymptotics for Kinetic Brownian Motion on Hyperbolic Surfaces.” <i>ArXiv:1909.06183</i>, 2019.
@article{Kolb_Weich_Wolf_2019, title={Spectral Asymptotics for Kinetic Brownian Motion on Hyperbolic Surfaces}, journal={arXiv:1909.06183}, author={Kolb, Martin and Weich, Tobias and Wolf, Lasse Lennart}, year={2019} }
311912022-05-11T10:42:11Z2022-05-24T13:06:58Z