{"department":[{"_id":"542"}],"title":"Edge-connectivity and pairwise disjoint perfect matchings in regular graphs","_id":"33661","author":[{"last_name":"Ma","first_name":"Yulai","id":"92748","full_name":"Ma, Yulai"},{"last_name":"Mattiolo","first_name":"Davide","full_name":"Mattiolo, Davide"},{"full_name":"Steffen, Eckhard","id":"15548","last_name":"Steffen","first_name":"Eckhard"},{"last_name":"Wolf","first_name":"Isaak Hieronymus","id":"88145","full_name":"Wolf, Isaak Hieronymus"}],"date_updated":"2022-10-18T11:00:50Z","publication":"arXiv:2208.14835","type":"preprint","language":[{"iso":"eng"}],"status":"public","year":"2022","date_created":"2022-10-10T09:09:35Z","citation":{"apa":"Ma, Y., Mattiolo, D., Steffen, E., & Wolf, I. H. (2022). Edge-connectivity and pairwise disjoint perfect matchings in regular graphs. In arXiv:2208.14835.","ieee":"Y. Ma, D. Mattiolo, E. Steffen, and I. H. Wolf, “Edge-connectivity and pairwise disjoint perfect matchings in regular graphs,” arXiv:2208.14835. 2022.","bibtex":"@article{Ma_Mattiolo_Steffen_Wolf_2022, title={Edge-connectivity and pairwise disjoint perfect matchings in regular graphs}, journal={arXiv:2208.14835}, author={Ma, Yulai and Mattiolo, Davide and Steffen, Eckhard and Wolf, Isaak Hieronymus}, year={2022} }","short":"Y. Ma, D. Mattiolo, E. Steffen, I.H. Wolf, ArXiv:2208.14835 (2022).","mla":"Ma, Yulai, et al. “Edge-Connectivity and Pairwise Disjoint Perfect Matchings in Regular Graphs.” ArXiv:2208.14835, 2022.","ama":"Ma Y, Mattiolo D, Steffen E, Wolf IH. Edge-connectivity and pairwise disjoint perfect matchings in regular graphs. arXiv:220814835. Published online 2022.","chicago":"Ma, Yulai, Davide Mattiolo, Eckhard Steffen, and Isaak Hieronymus Wolf. “Edge-Connectivity and Pairwise Disjoint Perfect Matchings in Regular Graphs.” ArXiv:2208.14835, 2022."},"external_id":{"arxiv":["2208.14835"]},"abstract":[{"text":"For 0≤t≤r let m(t,r) be the maximum number s such that every t-edge-connected r-graph has s pairwise disjoint perfect matchings. There are only a few values of m(t,r) known, for instance m(3,3)=m(4,r)=1, and m(t,r)≤r−2 for all t≠5, and m(t,r)≤r−3 if r is even. We prove that m(2l,r)≤3l−6 for every l≥3 and r≥2l. ","lang":"eng"}],"user_id":"15540"}