@article{34235, abstract = {{We demonstrate for the first time, to the best of our knowledge, reconfigurable and real-time orthogonal time-domain detection of a high-bandwidth Nyquist signal with a low-bandwidth silicon photonics Mach-Zehnder modulator based receiver. As the Nyquist signal has a rectangular bandwidth, it can be multiplexed in the wavelength domain without any guardband as a part of a Nyquist-WDM superchannel. These superchannels can be additionally multiplexed in space and polarization. Thus, the presented demonstration can open a new possibility for the detection of multidimensional parallel data signals with silicon photonics. No external pulse source is needed for the receiver, and frequency-time coherence is used to sample the incoming Nyquist signal with orthogonal sinc-shaped Nyquist pulse sequences. All parameters are completely tunable in the electrical domain. The feasibility of the scheme is demonstrated through a proof-of-concept experiment over the entire C-band (1530 nm–1560 nm), employing a 24 Gbaud Nyquist QPSK signal due to experimental constraints on the transmitter side electronics. However, the silicon Mach-Zehnder modulator with a 3-dB bandwidth of only 16 GHz can process Nyquist signals of 90 GHz optical bandwidth, suggesting a possibility to detect symbol rates up to 90 GBd in an integrated Nyquist receiver.}}, author = {{Misra, Arijit and Kress, Christian and Singh, Karanveer and Meier, Janosch and Schwabe, Tobias and Preussler, Stefan and Scheytt, J. Christoph and Schneider, Thomas}}, issn = {{1094-4087}}, journal = {{Optics Express}}, number = {{8}}, publisher = {{Optica Publishing Group}}, title = {{{Reconfigurable and real-time high-bandwidth Nyquist signal detection with low-bandwidth in silicon photonics}}}, doi = {{10.1364/oe.454163}}, volume = {{30}}, year = {{2022}}, }