{"publication_identifier":{"issn":["0377-0427"]},"title":"L_2 error estimates for polynomial discrete penalized least-squares approximation on the sphere from noisy data","language":[{"iso":"eng"}],"article_number":"114118","date_updated":"2023-01-09T08:23:56Z","year":"2022","volume":408,"author":[{"orcid":"0000-0003-4125-1941","first_name":"Kerstin","last_name":"Hesse","id":"42608","full_name":"Hesse, Kerstin"},{"full_name":"Le Gia, Quoc Thong","first_name":"Quoc Thong","last_name":"Le Gia"}],"_id":"34633","citation":{"chicago":"Hesse, Kerstin, and Quoc Thong Le Gia. “L_2 Error Estimates for Polynomial Discrete Penalized Least-Squares Approximation on the Sphere from Noisy Data.” Journal of Computational and Applied Mathematics 408 (2022). https://doi.org/10.1016/j.cam.2022.114118.","bibtex":"@article{Hesse_Le Gia_2022, title={L_2 error estimates for polynomial discrete penalized least-squares approximation on the sphere from noisy data}, volume={408}, DOI={10.1016/j.cam.2022.114118}, number={114118}, journal={Journal of Computational and Applied Mathematics}, publisher={Elsevier BV}, author={Hesse, Kerstin and Le Gia, Quoc Thong}, year={2022} }","apa":"Hesse, K., & Le Gia, Q. T. (2022). L_2 error estimates for polynomial discrete penalized least-squares approximation on the sphere from noisy data. Journal of Computational and Applied Mathematics, 408, Article 114118. https://doi.org/10.1016/j.cam.2022.114118","short":"K. Hesse, Q.T. Le Gia, Journal of Computational and Applied Mathematics 408 (2022).","ama":"Hesse K, Le Gia QT. L_2 error estimates for polynomial discrete penalized least-squares approximation on the sphere from noisy data. Journal of Computational and Applied Mathematics. 2022;408. doi:10.1016/j.cam.2022.114118","ieee":"K. Hesse and Q. T. Le Gia, “L_2 error estimates for polynomial discrete penalized least-squares approximation on the sphere from noisy data,” Journal of Computational and Applied Mathematics, vol. 408, Art. no. 114118, 2022, doi: 10.1016/j.cam.2022.114118.","mla":"Hesse, Kerstin, and Quoc Thong Le Gia. “L_2 Error Estimates for Polynomial Discrete Penalized Least-Squares Approximation on the Sphere from Noisy Data.” Journal of Computational and Applied Mathematics, vol. 408, 114118, Elsevier BV, 2022, doi:10.1016/j.cam.2022.114118."},"publisher":"Elsevier BV","type":"journal_article","keyword":["Applied Mathematics","Computational Mathematics"],"intvolume":" 408","status":"public","publication_status":"published","user_id":"14931","date_created":"2022-12-20T17:37:16Z","publication":"Journal of Computational and Applied Mathematics","department":[{"_id":"10"}],"doi":"10.1016/j.cam.2022.114118"}