{"user_id":"82981","year":"2020","author":[{"id":"21202","first_name":"Jürgen","last_name":"Klüners","full_name":"Klüners, Jürgen"},{"last_name":"Müller","full_name":"Müller, Raphael","first_name":"Raphael"}],"title":"The conductor density of local function fields with abelian Galois group","_id":"34841","language":[{"iso":"eng"}],"publisher":"Elsevier BV","page":"311-322","date_updated":"2025-06-13T08:18:30Z","volume":212,"keyword":["Algebra and Number Theory"],"type":"journal_article","doi":"10.1016/j.jnt.2019.11.007","external_id":{"arxiv":["1904.02573 "]},"abstract":[{"text":"We give an exact formula for the number of G-extensions of local function fields Fq((t)) for finite abelian groups G up to a conductor bound. As an application we give a lower bound for the corresponding counting problem by discriminant.\r\n","lang":"eng"}],"date_created":"2022-12-22T10:50:03Z","status":"public","publication_identifier":{"issn":["0022-314X"]},"department":[{"_id":"102"}],"publication_status":"published","publication":"Journal of Number Theory","citation":{"apa":"Klüners, J., & Müller, R. (2020). The conductor density of local function fields with abelian Galois group. Journal of Number Theory, 212, 311–322. https://doi.org/10.1016/j.jnt.2019.11.007","chicago":"Klüners, Jürgen, and Raphael Müller. “The Conductor Density of Local Function Fields with Abelian Galois Group.” Journal of Number Theory 212 (2020): 311–22. https://doi.org/10.1016/j.jnt.2019.11.007.","short":"J. Klüners, R. Müller, Journal of Number Theory 212 (2020) 311–322.","ieee":"J. Klüners and R. Müller, “The conductor density of local function fields with abelian Galois group,” Journal of Number Theory, vol. 212, pp. 311–322, 2020, doi: 10.1016/j.jnt.2019.11.007.","mla":"Klüners, Jürgen, and Raphael Müller. “The Conductor Density of Local Function Fields with Abelian Galois Group.” Journal of Number Theory, vol. 212, Elsevier BV, 2020, pp. 311–22, doi:10.1016/j.jnt.2019.11.007.","bibtex":"@article{Klüners_Müller_2020, title={The conductor density of local function fields with abelian Galois group}, volume={212}, DOI={10.1016/j.jnt.2019.11.007}, journal={Journal of Number Theory}, publisher={Elsevier BV}, author={Klüners, Jürgen and Müller, Raphael}, year={2020}, pages={311–322} }","ama":"Klüners J, Müller R. The conductor density of local function fields with abelian Galois group. Journal of Number Theory. 2020;212:311-322. doi:10.1016/j.jnt.2019.11.007"},"intvolume":" 212"}