{"user_id":"93826","publisher":"Springer Berlin Heidelberg","publication":"The LLL Algorithm","year":"2009","citation":{"ama":"Klüners J. The van Hoeij Algorithm for Factoring Polynomials. In: The LLL Algorithm. Springer Berlin Heidelberg; 2009. doi:10.1007/978-3-642-02295-1_8","bibtex":"@inbook{Klüners_2009, place={Berlin, Heidelberg}, title={The van Hoeij Algorithm for Factoring Polynomials}, DOI={10.1007/978-3-642-02295-1_8}, booktitle={The LLL Algorithm}, publisher={Springer Berlin Heidelberg}, author={Klüners, Jürgen}, year={2009} }","mla":"Klüners, Jürgen. “The van Hoeij Algorithm for Factoring Polynomials.” The LLL Algorithm, Springer Berlin Heidelberg, 2009, doi:10.1007/978-3-642-02295-1_8.","ieee":"J. Klüners, “The van Hoeij Algorithm for Factoring Polynomials,” in The LLL Algorithm, Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.","chicago":"Klüners, Jürgen. “The van Hoeij Algorithm for Factoring Polynomials.” In The LLL Algorithm. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. https://doi.org/10.1007/978-3-642-02295-1_8.","apa":"Klüners, J. (2009). The van Hoeij Algorithm for Factoring Polynomials. In The LLL Algorithm. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-02295-1_8","short":"J. Klüners, in: The LLL Algorithm, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009."},"title":"The van Hoeij Algorithm for Factoring Polynomials","_id":"35959","publication_identifier":{"issn":["1619-7100"],"isbn":["9783642022944","9783642022951"]},"type":"book_chapter","related_material":{"link":[{"relation":"confirmation","url":"https://www.researchgate.net/profile/Juergen-Klueners/publication/226764840_The_van_Hoeij_Algorithm_for_Factoring_Polynomials/links/00463532f2216a64ae000000/The-van-Hoeij-Algorithm-for-Factoring-Polynomials.pdf?origin=publication_detail"}]},"date_updated":"2023-03-06T09:10:34Z","date_created":"2023-01-11T09:48:17Z","language":[{"iso":"eng"}],"abstract":[{"text":"In this survey, we report about a new algorithm for factoring polynomials due to Mark van Hoeij. The main idea is that the combinatorial problem that occurs in the Zassenhaus algorithm is reduced to a very special knapsack problem. In case of rational polynomials, this knapsack problem can be very efficiently solved by the LLL algorithm. This gives a polynomial time algorithm, which also works very well in practice.","lang":"eng"}],"place":"Berlin, Heidelberg","doi":"10.1007/978-3-642-02295-1_8","publication_status":"published","department":[{"_id":"102"}],"status":"public","author":[{"id":"21202","first_name":"Jürgen","last_name":"Klüners","full_name":"Klüners, Jürgen"}]}