{"title":"Positivity of Dunkl's intertwining operator via the trigonometric setting","extern":"1","year":"2004","doi":"10.48550/ARXIV.MATH/0405368","publication":"International Mathematics Research Notices","language":[{"iso":"eng"}],"user_id":"93826","citation":{"apa":"Rösler, M., & Voit, M. (2004). Positivity of Dunkl’s intertwining operator via the trigonometric setting. International Mathematics Research Notices, 63, 3379–3389. https://doi.org/10.48550/ARXIV.MATH/0405368","chicago":"Rösler, Margit, and Michael Voit. “Positivity of Dunkl’s Intertwining Operator via the Trigonometric Setting.” International Mathematics Research Notices, no. 63 (2004): 3379–3389. https://doi.org/10.48550/ARXIV.MATH/0405368.","bibtex":"@article{Rösler_Voit_2004, title={Positivity of Dunkl’s intertwining operator via the trigonometric setting}, DOI={10.48550/ARXIV.MATH/0405368}, number={63}, journal={International Mathematics Research Notices}, publisher={Oxford University Press}, author={Rösler, Margit and Voit, Michael}, year={2004}, pages={3379–3389} }","short":"M. Rösler, M. Voit, International Mathematics Research Notices (2004) 3379–3389.","mla":"Rösler, Margit, and Michael Voit. “Positivity of Dunkl’s Intertwining Operator via the Trigonometric Setting.” International Mathematics Research Notices, no. 63, Oxford University Press, 2004, pp. 3379–3389, doi:10.48550/ARXIV.MATH/0405368.","ieee":"M. Rösler and M. Voit, “Positivity of Dunkl’s intertwining operator via the trigonometric setting,” International Mathematics Research Notices, no. 63, pp. 3379–3389, 2004, doi: 10.48550/ARXIV.MATH/0405368.","ama":"Rösler M, Voit M. Positivity of Dunkl’s intertwining operator via the trigonometric setting. International Mathematics Research Notices. 2004;(63):3379–3389. doi:10.48550/ARXIV.MATH/0405368"},"publication_status":"published","department":[{"_id":"555"}],"type":"journal_article","issue":"63","date_updated":"2023-01-26T17:28:09Z","_id":"40320","abstract":[{"lang":"eng","text":"In this note, a new proof for the positivity of Dunkl's intertwining operator in the crystallographic case is given. It is based on an asymptotic relationship between the Opdam-Cherednik kernel and the Dunkl kernel as recently observed by M. de Jeu, and on positivity results of S. Sahi for the Heckman-Opdam polynomials and their non-symmetric counterparts."}],"publication_identifier":{"issn":["1073-7928","1687-0247"]},"publisher":"Oxford University Press","author":[{"id":"37390","full_name":"Rösler, Margit","last_name":"Rösler","first_name":"Margit"},{"last_name":"Voit","first_name":"Michael","full_name":"Voit, Michael"}],"status":"public","date_created":"2023-01-26T11:05:33Z","page":"3379–3389"}