{"abstract":[{"lang":"eng","text":"AbstractTailored nanoscale quantum light sources, matching the specific needs of use cases, are crucial building blocks for photonic quantum technologies. Several different approaches to realize solid-state quantum emitters with high performance have been pursued and different concepts for energy tuning have been established. However, the properties of the emitted photons are always defined by the individual quantum emitter and can therefore not be controlled with full flexibility. Here we introduce an all-optical nonlinear method to tailor and control the single photon emission. We demonstrate a laser-controlled down-conversion process from an excited state of a semiconductor quantum three-level system. Based on this concept, we realize energy tuning and polarization control of the single photon emission with a control-laser field. Our results mark an important step towards tailored single photon emission from a photonic quantum system based on quantum optical principles."}],"project":[{"_id":"53","name":"TRR 142: TRR 142"},{"name":"TRR 142 - A: TRR 142 - Project Area A","_id":"54"},{"name":"TRR 142 - A03: TRR 142 - Subproject A03","_id":"60"},{"name":"PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing","_id":"52"}],"date_created":"2023-01-27T13:41:42Z","keyword":["General Physics and Astronomy","General Biochemistry","Genetics and Molecular Biology","General Chemistry","Multidisciplinary"],"issue":"1","publication_status":"published","article_number":"1387","doi":"10.1038/s41467-022-28993-3","author":[{"full_name":"Jonas, B.","last_name":"Jonas","first_name":"B."},{"last_name":"Heinze","id":"10904","full_name":"Heinze, Dirk Florian","first_name":"Dirk Florian"},{"last_name":"Schöll","full_name":"Schöll, E.","first_name":"E."},{"first_name":"P.","last_name":"Kallert","full_name":"Kallert, P."},{"first_name":"T.","full_name":"Langer, T.","last_name":"Langer"},{"first_name":"S.","last_name":"Krehs","full_name":"Krehs, S."},{"first_name":"A.","full_name":"Widhalm, A.","last_name":"Widhalm"},{"last_name":"Jöns","id":"85353","full_name":"Jöns, Klaus","first_name":"Klaus"},{"full_name":"Reuter, Dirk","id":"37763","last_name":"Reuter","first_name":"Dirk"},{"first_name":"Stefan","orcid":"0000-0003-4042-4951","id":"27271","last_name":"Schumacher","full_name":"Schumacher, Stefan"},{"orcid":"0000-0002-5190-0944","first_name":"Artur","id":"606","last_name":"Zrenner","full_name":"Zrenner, Artur"}],"publisher":"Springer Science and Business Media LLC","intvolume":" 13","status":"public","year":"2022","citation":{"bibtex":"@article{Jonas_Heinze_Schöll_Kallert_Langer_Krehs_Widhalm_Jöns_Reuter_Schumacher_et al._2022, title={Nonlinear down-conversion in a single quantum dot}, volume={13}, DOI={10.1038/s41467-022-28993-3}, number={11387}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Jonas, B. and Heinze, Dirk Florian and Schöll, E. and Kallert, P. and Langer, T. and Krehs, S. and Widhalm, A. and Jöns, Klaus and Reuter, Dirk and Schumacher, Stefan and et al.}, year={2022} }","short":"B. Jonas, D.F. Heinze, E. Schöll, P. Kallert, T. Langer, S. Krehs, A. Widhalm, K. Jöns, D. Reuter, S. Schumacher, A. Zrenner, Nature Communications 13 (2022).","chicago":"Jonas, B., Dirk Florian Heinze, E. Schöll, P. Kallert, T. Langer, S. Krehs, A. Widhalm, et al. “Nonlinear Down-Conversion in a Single Quantum Dot.” Nature Communications 13, no. 1 (2022). https://doi.org/10.1038/s41467-022-28993-3.","ieee":"B. Jonas et al., “Nonlinear down-conversion in a single quantum dot,” Nature Communications, vol. 13, no. 1, Art. no. 1387, 2022, doi: 10.1038/s41467-022-28993-3.","ama":"Jonas B, Heinze DF, Schöll E, et al. Nonlinear down-conversion in a single quantum dot. Nature Communications. 2022;13(1). doi:10.1038/s41467-022-28993-3","mla":"Jonas, B., et al. “Nonlinear Down-Conversion in a Single Quantum Dot.” Nature Communications, vol. 13, no. 1, 1387, Springer Science and Business Media LLC, 2022, doi:10.1038/s41467-022-28993-3.","apa":"Jonas, B., Heinze, D. F., Schöll, E., Kallert, P., Langer, T., Krehs, S., Widhalm, A., Jöns, K., Reuter, D., Schumacher, S., & Zrenner, A. (2022). Nonlinear down-conversion in a single quantum dot. Nature Communications, 13(1), Article 1387. https://doi.org/10.1038/s41467-022-28993-3"},"user_id":"16199","department":[{"_id":"15"},{"_id":"297"},{"_id":"230"},{"_id":"429"},{"_id":"27"},{"_id":"623"},{"_id":"170"},{"_id":"35"}],"publication_identifier":{"issn":["2041-1723"]},"title":"Nonlinear down-conversion in a single quantum dot","_id":"40523","volume":13,"language":[{"iso":"eng"}],"publication":"Nature Communications","type":"journal_article","date_updated":"2023-04-20T15:18:31Z"}