{"type":"conference","status":"public","abstract":[{"text":"Based on the Cramer-Loeve spectral representation for a harmonizable random process, the Rihaczek distribution is a time- and frequency-shift covariant, bilinear time-frequency distribution. It can be expressed as a complex Hilbert space inner product between the time series and its infinitesimal stochastic Fourier generator. We show that we may attach an illuminating geometry to this inner product, wherein the cosine-squared of the angle between the time series and its infinitesimal stochastic Fourier generator is given by the Rihaczek distribution. We propose to construct estimators of the Rihaczek distribution using a factored kernel in Cohen’s class of bilinear time-frequency distributions","lang":"eng"}],"date_created":"2023-01-30T11:52:08Z","user_id":"43497","page":"966–969","title":"A geometric interpretation of the Rihaczek time-frequency distribution for stochastic signals","department":[{"_id":"263"}],"date_updated":"2023-01-30T11:53:44Z","publication":"Proc.\\ IEEE Int.\\ Symp.\\ Inform.\\ Theory","year":"2005","author":[{"first_name":"Peter J.","last_name":"Schreier","full_name":"Schreier, Peter J."},{"first_name":"Louis L.","last_name":"Scharf","full_name":"Scharf, Louis L."},{"first_name":"Alfred","last_name":"Hanssen","full_name":"Hanssen, Alfred"}],"citation":{"short":"P.J. Schreier, L.L. Scharf, A. Hanssen, in: Proc.\\ IEEE Int.\\ Symp.\\ Inform.\\ Theory, 2005, pp. 966–969.","ama":"Schreier PJ, Scharf LL, Hanssen A. A geometric interpretation of the Rihaczek time-frequency distribution for stochastic signals. In: Proc.\\ IEEE Int.\\ Symp.\\ Inform.\\ Theory. ; 2005:966–969. doi:10.1109/ISIT.2005.1523481","chicago":"Schreier, Peter J., Louis L. Scharf, and Alfred Hanssen. “A Geometric Interpretation of the Rihaczek Time-Frequency Distribution for Stochastic Signals.” In Proc.\\ IEEE Int.\\ Symp.\\ Inform.\\ Theory, 966–969, 2005. https://doi.org/10.1109/ISIT.2005.1523481.","mla":"Schreier, Peter J., et al. “A Geometric Interpretation of the Rihaczek Time-Frequency Distribution for Stochastic Signals.” Proc.\\ IEEE Int.\\ Symp.\\ Inform.\\ Theory, 2005, pp. 966–969, doi:10.1109/ISIT.2005.1523481.","bibtex":"@inproceedings{Schreier_Scharf_Hanssen_2005, title={A geometric interpretation of the Rihaczek time-frequency distribution for stochastic signals}, DOI={10.1109/ISIT.2005.1523481}, booktitle={Proc.\\ IEEE Int.\\ Symp.\\ Inform.\\ Theory}, author={Schreier, Peter J. and Scharf, Louis L. and Hanssen, Alfred}, year={2005}, pages={966–969} }","apa":"Schreier, P. J., Scharf, L. L., & Hanssen, A. (2005). A geometric interpretation of the Rihaczek time-frequency distribution for stochastic signals. Proc.\\ IEEE Int.\\ Symp.\\ Inform.\\ Theory, 966–969. https://doi.org/10.1109/ISIT.2005.1523481","ieee":"P. J. Schreier, L. L. Scharf, and A. Hanssen, “A geometric interpretation of the Rihaczek time-frequency distribution for stochastic signals,” in Proc.\\ IEEE Int.\\ Symp.\\ Inform.\\ Theory, 2005, pp. 966–969, doi: 10.1109/ISIT.2005.1523481."},"_id":"40893","doi":"10.1109/ISIT.2005.1523481"}