{"user_id":"23547","title":"Overcoming Diffusion Limitation of Faradaic Processes: Property‐Performance Relationships of 2D Conductive Metal‐Organic Framework Cu3(HHTP)2 for Reversible Lithium‐Ion Storage","author":[{"last_name":"Wrogemann","first_name":"Jens Matthies","full_name":"Wrogemann, Jens Matthies"},{"full_name":"Lüther, Marco Joes","last_name":"Lüther","first_name":"Marco Joes"},{"full_name":"Bärmann, Peer","first_name":"Peer","last_name":"Bärmann"},{"first_name":"Mailis","last_name":"Lounasvuori","full_name":"Lounasvuori, Mailis"},{"full_name":"Javed, Ali","first_name":"Ali","last_name":"Javed"},{"id":"23547","first_name":"Michael","last_name":"Tiemann","full_name":"Tiemann, Michael","orcid":"0000-0003-1711-2722"},{"last_name":"Golnak","first_name":"Ronny","full_name":"Golnak, Ronny"},{"last_name":"Xiao","first_name":"Jie","full_name":"Xiao, Jie"},{"first_name":"Tristan","last_name":"Petit","full_name":"Petit, Tristan"},{"full_name":"Placke, Tobias","last_name":"Placke","first_name":"Tobias"},{"first_name":"Martin","last_name":"Winter","full_name":"Winter, Martin"}],"status":"public","page":"e202303111","publisher":"Wiley","volume":62,"quality_controlled":"1","publication_status":"published","type":"journal_article","date_updated":"2023-06-21T09:50:14Z","intvolume":" 62","publication":"Angewandte Chemie International Edition","date_created":"2023-04-22T06:17:33Z","citation":{"ieee":"J. M. Wrogemann et al., “Overcoming Diffusion Limitation of Faradaic Processes: Property‐Performance Relationships of 2D Conductive Metal‐Organic Framework Cu3(HHTP)2 for Reversible Lithium‐Ion Storage,” Angewandte Chemie International Edition, vol. 62, no. 26, p. e202303111, 2023, doi: 10.1002/anie.202303111.","bibtex":"@article{Wrogemann_Lüther_Bärmann_Lounasvuori_Javed_Tiemann_Golnak_Xiao_Petit_Placke_et al._2023, title={Overcoming Diffusion Limitation of Faradaic Processes: Property‐Performance Relationships of 2D Conductive Metal‐Organic Framework Cu3(HHTP)2 for Reversible Lithium‐Ion Storage}, volume={62}, DOI={10.1002/anie.202303111}, number={26}, journal={Angewandte Chemie International Edition}, publisher={Wiley}, author={Wrogemann, Jens Matthies and Lüther, Marco Joes and Bärmann, Peer and Lounasvuori, Mailis and Javed, Ali and Tiemann, Michael and Golnak, Ronny and Xiao, Jie and Petit, Tristan and Placke, Tobias and et al.}, year={2023}, pages={e202303111} }","short":"J.M. Wrogemann, M.J. Lüther, P. Bärmann, M. Lounasvuori, A. Javed, M. Tiemann, R. Golnak, J. Xiao, T. Petit, T. Placke, M. Winter, Angewandte Chemie International Edition 62 (2023) e202303111.","chicago":"Wrogemann, Jens Matthies, Marco Joes Lüther, Peer Bärmann, Mailis Lounasvuori, Ali Javed, Michael Tiemann, Ronny Golnak, et al. “Overcoming Diffusion Limitation of Faradaic Processes: Property‐Performance Relationships of 2D Conductive Metal‐Organic Framework Cu3(HHTP)2 for Reversible Lithium‐Ion Storage.” Angewandte Chemie International Edition 62, no. 26 (2023): e202303111. https://doi.org/10.1002/anie.202303111.","mla":"Wrogemann, Jens Matthies, et al. “Overcoming Diffusion Limitation of Faradaic Processes: Property‐Performance Relationships of 2D Conductive Metal‐Organic Framework Cu3(HHTP)2 for Reversible Lithium‐Ion Storage.” Angewandte Chemie International Edition, vol. 62, no. 26, Wiley, 2023, p. e202303111, doi:10.1002/anie.202303111.","ama":"Wrogemann JM, Lüther MJ, Bärmann P, et al. Overcoming Diffusion Limitation of Faradaic Processes: Property‐Performance Relationships of 2D Conductive Metal‐Organic Framework Cu3(HHTP)2 for Reversible Lithium‐Ion Storage. Angewandte Chemie International Edition. 2023;62(26):e202303111. doi:10.1002/anie.202303111","apa":"Wrogemann, J. M., Lüther, M. J., Bärmann, P., Lounasvuori, M., Javed, A., Tiemann, M., Golnak, R., Xiao, J., Petit, T., Placke, T., & Winter, M. (2023). Overcoming Diffusion Limitation of Faradaic Processes: Property‐Performance Relationships of 2D Conductive Metal‐Organic Framework Cu3(HHTP)2 for Reversible Lithium‐Ion Storage. Angewandte Chemie International Edition, 62(26), e202303111. https://doi.org/10.1002/anie.202303111"},"abstract":[{"text":"Faradaic reactions including charge transfer are often accompanied with diffusion limitation inside the bulk. Conductive two-dimensional frameworks (2D MOFs) with a fast ion transport can combine both - charge transfer and fast diffusion inside their porous structure. To study remaining diffusion limitations caused by particle morphology, different synthesis routes of Cu-2,3,6,7,10,11-hexahydroxytriphenylene (Cu3(HHTP)2), a copper-based 2D MOF, are used to obtain flake- and rod-like MOF particles. Both morphologies are systematically characterized and evaluated for redox-active Li+ ion storage. The redox mechanism is investigated by means of X-ray absorption spectroscopy, FTIR spectroscopy and in situ XRD. Both types are compared regarding kinetic properties for Li+ ion storage via cyclic voltammetry and impedance spectroscopy. A significant influence of particle morphology for 2D MOFs on kinetic aspects of electrochemical Li+ ion storage can be observed. This study opens the path for optimization of redox active porous structures to overcome diffusion limitations of Faradaic processes.","lang":"eng"}],"publication_identifier":{"issn":["1433-7851","1521-3773"]},"language":[{"iso":"eng"}],"_id":"44116","year":"2023","department":[{"_id":"35"},{"_id":"2"},{"_id":"307"}],"keyword":["General Chemistry","Catalysis"],"doi":"10.1002/anie.202303111","main_file_link":[{"open_access":"1"}],"issue":"26","oa":"1"}