Rotation r-graphs

E. Steffen, I.H. Wolf, Discrete Mathematics (2023) (2023).

Download
No fulltext has been uploaded.
Journal Article | English
Abstract
We study rotation r-graphs and show that for every r-graph G of odd regularity there is a simple rotation r-graph G′ such that G can be obtained form G′ by a finite number of 2-cut reductions. As a consequence, some hard conjectures as the (generalized) Berge-Fulkerson Conjecture and Tutte's 3- and 5-flow conjecture can be reduced to rotation r-graphs.
Publishing Year
Journal Title
Discrete Mathematics (2023)
LibreCat-ID

Cite this

Steffen E, Wolf IH. Rotation r-graphs. Discrete Mathematics (2023). Published online 2023. doi:10.1016/j.disc.2023.113457
Steffen, E., & Wolf, I. H. (2023). Rotation r-graphs. Discrete Mathematics (2023). https://doi.org/10.1016/j.disc.2023.113457
@article{Steffen_Wolf_2023, title={Rotation r-graphs}, DOI={10.1016/j.disc.2023.113457}, journal={Discrete Mathematics (2023)}, author={Steffen, Eckhard and Wolf, Isaak Hieronymus}, year={2023} }
Steffen, Eckhard, and Isaak Hieronymus Wolf. “Rotation R-Graphs.” Discrete Mathematics (2023), 2023. https://doi.org/10.1016/j.disc.2023.113457.
E. Steffen and I. H. Wolf, “Rotation r-graphs,” Discrete Mathematics (2023), 2023, doi: 10.1016/j.disc.2023.113457.
Steffen, Eckhard, and Isaak Hieronymus Wolf. “Rotation R-Graphs.” Discrete Mathematics (2023), 2023, doi:10.1016/j.disc.2023.113457.

Export

Marked Publications

Open Data LibreCat

Sources

arXiv 2304.12710

Search this title in

Google Scholar