{"publication_identifier":{"issn":["2511-9044","2511-9044"]},"main_file_link":[{"url":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202300142","open_access":"1"}],"language":[{"iso":"eng"}],"_id":"48599","keyword":["tet_topic_qd"],"author":[{"full_name":"Bauch, David","last_name":"Bauch","first_name":"David"},{"first_name":"Dustin","full_name":"Siebert, Dustin","last_name":"Siebert"},{"id":"85353","first_name":"Klaus","full_name":"Jöns, Klaus","last_name":"Jöns"},{"orcid":"0000-0001-7059-9862","id":"158","full_name":"Förstner, Jens","last_name":"Förstner","first_name":"Jens"},{"id":"27271","first_name":"Stefan","last_name":"Schumacher","full_name":"Schumacher, Stefan","orcid":"0000-0003-4042-4951"}],"year":"2023","date_updated":"2023-12-21T10:41:17Z","department":[{"_id":"61"},{"_id":"230"},{"_id":"429"},{"_id":"623"}],"user_id":"158","date_created":"2023-11-03T10:07:38Z","status":"public","type":"journal_article","publisher":"Wiley","doi":"10.1002/qute.202300142","citation":{"chicago":"Bauch, David, Dustin Siebert, Klaus Jöns, Jens Förstner, and Stefan Schumacher. “On‐Demand Indistinguishable and Entangled Photons Using Tailored Cavity Designs.” Advanced Quantum Technologies, 2023. https://doi.org/10.1002/qute.202300142.","ama":"Bauch D, Siebert D, Jöns K, Förstner J, Schumacher S. On‐Demand Indistinguishable and Entangled Photons Using Tailored Cavity Designs. Advanced Quantum Technologies. Published online 2023. doi:10.1002/qute.202300142","short":"D. Bauch, D. Siebert, K. Jöns, J. Förstner, S. Schumacher, Advanced Quantum Technologies (2023).","ieee":"D. Bauch, D. Siebert, K. Jöns, J. Förstner, and S. Schumacher, “On‐Demand Indistinguishable and Entangled Photons Using Tailored Cavity Designs,” Advanced Quantum Technologies, 2023, doi: 10.1002/qute.202300142.","mla":"Bauch, David, et al. “On‐Demand Indistinguishable and Entangled Photons Using Tailored Cavity Designs.” Advanced Quantum Technologies, Wiley, 2023, doi:10.1002/qute.202300142.","bibtex":"@article{Bauch_Siebert_Jöns_Förstner_Schumacher_2023, title={On‐Demand Indistinguishable and Entangled Photons Using Tailored Cavity Designs}, DOI={10.1002/qute.202300142}, journal={Advanced Quantum Technologies}, publisher={Wiley}, author={Bauch, David and Siebert, Dustin and Jöns, Klaus and Förstner, Jens and Schumacher, Stefan}, year={2023} }","apa":"Bauch, D., Siebert, D., Jöns, K., Förstner, J., & Schumacher, S. (2023). On‐Demand Indistinguishable and Entangled Photons Using Tailored Cavity Designs. Advanced Quantum Technologies. https://doi.org/10.1002/qute.202300142"},"oa":"1","project":[{"grant_number":"231447078","name":"TRR 142 - C09: TRR 142 - Ideale Erzeugung von Photonenpaaren für Verschränkungsaustausch bei Telekom Wellenlängen (C09*)","_id":"173"},{"_id":"167","grant_number":"231447078","name":"TRR 142 - B06: TRR 142 - Ultraschnelle kohärente opto-elektronische Kontrolle eines photonischen Quantensystems (B06*)"},{"_id":"52","name":"PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing"}],"publication":"Advanced Quantum Technologies","title":"On‐Demand Indistinguishable and Entangled Photons Using Tailored Cavity Designs","abstract":[{"lang":"eng","text":"AbstractThe biexciton‐exciton emission cascade commonly used in quantum‐dot systems to generate polarization entanglement yields photons with intrinsically limited indistinguishability. In the present work, it focuses on the generation of pairs of photons with high degrees of polarization entanglement and simultaneously high indistinguishability. It achieves this goal by selectively reducing the biexciton lifetime with an optical resonator. It demonstrates that a suitably tailored circular Bragg reflector fulfills the requirements of sufficient selective Purcell enhancement of biexciton emission paired with spectrally broad photon extraction and twofold degenerate optical modes. The in‐depth theoretical study combines (i) the optimization of realistic photonic structures solving Maxwell's equations from which model parameters are extracted as input for (ii) microscopic simulations of quantum‐dot cavity excitation dynamics with full access to photon properties. It reports non‐trivial dependencies on system parameters and use the predictive power of the combined theoretical approach to determine the optimal range of Purcell enhancement that maximizes indistinguishability and entanglement to near unity values, here specifically for the telecom C‐band at 1550 nm."}],"related_material":{"record":[{"relation":"earlier_version","id":"43246","status":"public"}]},"publication_status":"published"}