TY - CONF
AB - Quality diversity (QD) is a branch of evolutionary computation that gained increasing interest in recent years. The Map-Elites QD approach defines a feature space, i.e., a partition of the search space, and stores the best solution for each cell of this space. We study a simple QD algorithm in the context of pseudo-Boolean optimisation on the "number of ones" feature space, where the ith cell stores the best solution amongst those with a number of ones in [(i - 1)k, ik - 1]. Here k is a granularity parameter 1 {$\leq$} k {$\leq$} n+1. We give a tight bound on the expected time until all cells are covered for arbitrary fitness functions and for all k and analyse the expected optimisation time of QD on OneMax and other problems whose structure aligns favourably with the feature space. On combinatorial problems we show that QD finds a (1 - 1/e)-approximation when maximising any monotone sub-modular function with a single uniform cardinality constraint efficiently. Defining the feature space as the number of connected components of a connected graph, we show that QD finds a minimum spanning tree in expected polynomial time.
AU - Bossek, Jakob
AU - Sudholt, Dirk
ID - 48872
KW - quality diversity
KW - runtime analysis
SN - 9798400701191
T2 - Proceedings of the Genetic and Evolutionary Computation Conference
TI - Runtime Analysis of Quality Diversity Algorithms
ER -