Hypernetworks: Cluster Synchronization Is a Higher-Order Effect
Many networked systems are governed by non-pairwise interactions between nodes. The resulting higher-order interaction structure can then be encoded by means of a hypernetwork. In this paper we consider dynamical systems on hypernetworks by defining a class of admissible maps for every such hypernetwork. We explain how to classify robust cluster synchronization patterns on hypernetworks by finding balanced partitions, and we generalize the concept of a graph fibration to the hypernetwork context. We also show that robust synchronization patterns are only fully determined by polynomial admissible maps of high order. This means that, unlike in dyadic networks, cluster synchronization on hypernetworks is a higher-order, i.e., nonlinear, effect. We give a formula, in terms of the order of the hypernetwork, for the degree of the polynomial admissible maps that determine robust synchronization patterns. We also demonstrate that this degree is optimal by investigating a class of examples. We conclude by demonstrating how this effect may cause remarkable synchrony breaking bifurcations that occur at high polynomial degree.
83
6
2329-2353
2329-2353
Society for Industrial & Applied Mathematics (SIAM)