{"author":[{"first_name":"Tobias","last_name":"Weich","full_name":"Weich, Tobias","id":"49178","orcid":"0000-0002-9648-6919"},{"first_name":"Lasse Lennart","last_name":"Wolf","full_name":"Wolf, Lasse Lennart","id":"45027","orcid":"0000-0001-8893-2045"}],"department":[{"_id":"10"},{"_id":"623"},{"_id":"548"}],"date_created":"2024-02-06T21:00:55Z","citation":{"apa":"Weich, T., & Wolf, L. L. (2024). Temperedness of locally symmetric spaces: The product case. Geom Dedicata, 218, Article 76. https://doi.org/10.1007/s10711-024-00904-4","chicago":"Weich, Tobias, and Lasse Lennart Wolf. “Temperedness of Locally Symmetric Spaces: The Product Case.” Geom Dedicata 218 (2024). https://doi.org/10.1007/s10711-024-00904-4.","short":"T. Weich, L.L. Wolf, Geom Dedicata 218 (2024).","bibtex":"@article{Weich_Wolf_2024, title={Temperedness of locally symmetric spaces: The product case}, volume={218}, DOI={https://doi.org/10.1007/s10711-024-00904-4}, number={76}, journal={Geom Dedicata}, author={Weich, Tobias and Wolf, Lasse Lennart}, year={2024} }","ieee":"T. Weich and L. L. Wolf, “Temperedness of locally symmetric spaces: The product case,” Geom Dedicata, vol. 218, Art. no. 76, 2024, doi: https://doi.org/10.1007/s10711-024-00904-4.","ama":"Weich T, Wolf LL. Temperedness of locally symmetric spaces: The product case. Geom Dedicata. 2024;218. doi:https://doi.org/10.1007/s10711-024-00904-4","mla":"Weich, Tobias, and Lasse Lennart Wolf. “Temperedness of Locally Symmetric Spaces: The Product Case.” Geom Dedicata, vol. 218, 76, 2024, doi:https://doi.org/10.1007/s10711-024-00904-4."},"status":"public","intvolume":" 218","user_id":"45027","language":[{"iso":"eng"}],"abstract":[{"text":"Let $X=X_1\\times X_2$ be a product of two rank one symmetric spaces of\r\nnon-compact type and $\\Gamma$ a torsion-free discrete subgroup in $G_1\\times\r\nG_2$. We show that the spectrum of $\\Gamma \\backslash X$ is related to the\r\nasymptotic growth of $\\Gamma$ in the two direction defined by the two factors.\r\nWe obtain that $L^2(\\Gamma \\backslash G)$ is tempered for large class of\r\n$\\Gamma$.","lang":"eng"}],"article_number":"76","year":"2024","publication":"Geom Dedicata","_id":"51207","external_id":{"arxiv":["2304.09573"]},"doi":"https://doi.org/10.1007/s10711-024-00904-4","date_updated":"2024-05-07T11:44:34Z","type":"journal_article","volume":218,"title":"Temperedness of locally symmetric spaces: The product case"}