{"intvolume":" 153","citation":{"ama":"Wang Y, Winkler M. Finite-time blow-up in a repulsive chemotaxis-consumption system. Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 2022;153(4):1150-1166. doi:10.1017/prm.2022.39","bibtex":"@article{Wang_Winkler_2022, title={Finite-time blow-up in a repulsive chemotaxis-consumption system}, volume={153}, DOI={10.1017/prm.2022.39}, number={4}, journal={Proceedings of the Royal Society of Edinburgh: Section A Mathematics}, publisher={Cambridge University Press (CUP)}, author={Wang, Yulan and Winkler, Michael}, year={2022}, pages={1150–1166} }","short":"Y. Wang, M. Winkler, Proceedings of the Royal Society of Edinburgh: Section A Mathematics 153 (2022) 1150–1166.","ieee":"Y. Wang and M. Winkler, “Finite-time blow-up in a repulsive chemotaxis-consumption system,” Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol. 153, no. 4, pp. 1150–1166, 2022, doi: 10.1017/prm.2022.39.","mla":"Wang, Yulan, and Michael Winkler. “Finite-Time Blow-up in a Repulsive Chemotaxis-Consumption System.” Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol. 153, no. 4, Cambridge University Press (CUP), 2022, pp. 1150–66, doi:10.1017/prm.2022.39.","apa":"Wang, Y., & Winkler, M. (2022). Finite-time blow-up in a repulsive chemotaxis-consumption system. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 153(4), 1150–1166. https://doi.org/10.1017/prm.2022.39","chicago":"Wang, Yulan, and Michael Winkler. “Finite-Time Blow-up in a Repulsive Chemotaxis-Consumption System.” Proceedings of the Royal Society of Edinburgh: Section A Mathematics 153, no. 4 (2022): 1150–66. https://doi.org/10.1017/prm.2022.39."},"title":"Finite-time blow-up in a repulsive chemotaxis-consumption system","publication":"Proceedings of the Royal Society of Edinburgh: Section A Mathematics","doi":"10.1017/prm.2022.39","date_updated":"2024-04-07T12:44:30Z","_id":"53331","abstract":[{"text":"In a ball $\\Omega \\subset \\mathbb {R}^{n}$ with $n\\ge 2$, the chemotaxis system\r\n\\[ \\left\\{ \\begin{array}{@{}l} u_t = \\nabla \\cdot \\big( D(u)\\nabla u\\big) + \\nabla\\cdot \\big(\\dfrac{u}{v} \\nabla v\\big), \\\\ 0=\\Delta v - uv \\end{array} \\right. \\]is considered along with no-flux boundary conditions for $u$ and with prescribed constant positive Dirichlet boundary data for $v$. It is shown that if $D\\in C^{3}([0,\\infty ))$ is such that $0< D(\\xi ) \\le {K_D} (\\xi +1)^{-\\alpha }$ for all $\\xi >0$ with some ${K_D}>0$ and $\\alpha >0$, then for all initial data from a considerably large set of radial functions on $\\Omega$, the corresponding initial-boundary value problem admits a solution blowing up in finite time.","lang":"eng"}],"publication_identifier":{"issn":["0308-2105","1473-7124"]},"language":[{"iso":"eng"}],"publisher":"Cambridge University Press (CUP)","volume":153,"page":"1150-1166","date_created":"2024-04-07T12:44:26Z","publication_status":"published","user_id":"31496","type":"journal_article","issue":"4","year":"2022","keyword":["General Mathematics"],"status":"public","author":[{"last_name":"Wang","full_name":"Wang, Yulan","first_name":"Yulan"},{"last_name":"Winkler","full_name":"Winkler, Michael","first_name":"Michael"}]}