{"citation":{"short":"M. Winkler, Open Mathematics 21 (2023).","bibtex":"@article{Winkler_2023, title={Classical solutions to Cauchy problems for parabolic–elliptic systems of Keller-Segel type}, volume={21}, DOI={10.1515/math-2022-0578}, number={1}, journal={Open Mathematics}, publisher={Walter de Gruyter GmbH}, author={Winkler, Michael}, year={2023} }","ieee":"M. Winkler, “Classical solutions to Cauchy problems for parabolic–elliptic systems of Keller-Segel type,” Open Mathematics, vol. 21, no. 1, 2023, doi: 10.1515/math-2022-0578.","ama":"Winkler M. Classical solutions to Cauchy problems for parabolic–elliptic systems of Keller-Segel type. Open Mathematics. 2023;21(1). doi:10.1515/math-2022-0578","mla":"Winkler, Michael. “Classical Solutions to Cauchy Problems for Parabolic–Elliptic Systems of Keller-Segel Type.” Open Mathematics, vol. 21, no. 1, Walter de Gruyter GmbH, 2023, doi:10.1515/math-2022-0578.","chicago":"Winkler, Michael. “Classical Solutions to Cauchy Problems for Parabolic–Elliptic Systems of Keller-Segel Type.” Open Mathematics 21, no. 1 (2023). https://doi.org/10.1515/math-2022-0578.","apa":"Winkler, M. (2023). Classical solutions to Cauchy problems for parabolic–elliptic systems of Keller-Segel type. Open Mathematics, 21(1). https://doi.org/10.1515/math-2022-0578"},"volume":21,"publisher":"Walter de Gruyter GmbH","type":"journal_article","keyword":["General Mathematics"],"year":"2023","author":[{"first_name":"Michael","last_name":"Winkler","full_name":"Winkler, Michael"}],"user_id":"31496","publication_identifier":{"issn":["2391-5455"]},"_id":"53343","status":"public","date_created":"2024-04-07T12:54:31Z","doi":"10.1515/math-2022-0578","publication_status":"published","publication":"Open Mathematics","abstract":[{"lang":"eng","text":"Abstract\r\n The Cauchy problem in \r\n \r\n \r\n \r\n \r\n \r\n R\r\n \r\n \r\n n\r\n \r\n \r\n \r\n {{\\mathbb{R}}}^{n}\r\n \r\n , \r\n \r\n \r\n \r\n n\r\n \r\n 2\r\n \r\n n\\ge 2\r\n \r\n , for \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n u\r\n \r\n \r\n t\r\n \r\n \r\n =\r\n Δ\r\n u\r\n \r\n \r\n \r\n \r\n \r\n \r\n (\r\n \r\n u\r\n S\r\n \r\n \r\n \r\n \r\n v\r\n \r\n )\r\n \r\n ,\r\n \r\n \r\n \r\n \r\n 0\r\n =\r\n Δ\r\n v\r\n +\r\n u\r\n ,\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n (\r\n \r\n \r\n \r\n )\r\n \r\n \r\n \r\n \r\n \r\n \\begin{array}{r}\\left\\{\\phantom{\\rule[-1.25em]{}{0ex}}\\begin{array}{l}{u}_{t}=\\Delta u-\\nabla \\cdot \\left(uS\\cdot \\nabla v),\\\\ 0=\\Delta v+u,\\end{array}\\right.\\hspace{2.0em}\\hspace{2.0em}\\hspace{2.0em}\\left(\\star )\\end{array}\r\n \r\n is considered for general matrices \r\n \r\n \r\n \r\n S\r\n \r\n \r\n \r\n R\r\n \r\n \r\n n\r\n ×\r\n n\r\n \r\n \r\n \r\n S\\in {{\\mathbb{R}}}^{n\\times n}\r\n \r\n . A theory of local-in-time classical existence and extensibility is developed in a framework that differs from those considered in large parts of the literature by involving bounded classical solutions. Specifically, it is shown that for all non-negative initial data belonging to \r\n \r\n \r\n \r\n BUC\r\n \r\n (\r\n \r\n \r\n \r\n R\r\n \r\n \r\n n\r\n \r\n \r\n \r\n )\r\n \r\n \r\n \r\n \r\n L\r\n \r\n \r\n p\r\n \r\n \r\n \r\n (\r\n \r\n \r\n \r\n R\r\n \r\n \r\n n\r\n \r\n \r\n \r\n )\r\n \r\n \r\n {\\rm{BUC}}\\left({{\\mathbb{R}}}^{n})\\cap {L}^{p}\\left({{\\mathbb{R}}}^{n})\r\n \r\n with some \r\n \r\n \r\n \r\n p\r\n \r\n \r\n [\r\n \r\n 1\r\n ,\r\n n\r\n \r\n )\r\n \r\n \r\n p\\in \\left[1,n)\r\n \r\n , there exist \r\n \r\n \r\n \r\n \r\n \r\n T\r\n \r\n \r\n max\r\n \r\n \r\n \r\n \r\n (\r\n \r\n 0\r\n ,\r\n \r\n \r\n ]\r\n \r\n \r\n {T}_{\\max }\\in \\left(0,\\infty ]\r\n \r\n and a uniquely determined \r\n \r\n \r\n \r\n u\r\n \r\n \r\n \r\n C\r\n \r\n \r\n 0\r\n \r\n \r\n \r\n (\r\n \r\n \r\n [\r\n \r\n 0\r\n ,\r\n \r\n \r\n T\r\n \r\n \r\n max\r\n \r\n \r\n \r\n )\r\n \r\n ;\r\n \r\n BUC\r\n \r\n (\r\n \r\n \r\n \r\n R\r\n \r\n \r\n n\r\n \r\n \r\n \r\n )\r\n \r\n \r\n )\r\n \r\n \r\n \r\n \r\n C\r\n \r\n \r\n 0\r\n \r\n \r\n \r\n (\r\n \r\n \r\n [\r\n \r\n 0\r\n ,\r\n \r\n \r\n T\r\n \r\n \r\n max\r\n \r\n \r\n \r\n )\r\n \r\n ;\r\n \r\n \r\n \r\n L\r\n \r\n \r\n p\r\n \r\n \r\n \r\n (\r\n \r\n \r\n \r\n R\r\n \r\n \r\n n\r\n \r\n \r\n \r\n )\r\n \r\n \r\n )\r\n \r\n \r\n \r\n \r\n C\r\n \r\n \r\n \r\n \r\n \r\n \r\n (\r\n \r\n \r\n \r\n R\r\n \r\n \r\n n\r\n \r\n \r\n ×\r\n \r\n (\r\n \r\n 0\r\n ,\r\n \r\n \r\n T\r\n \r\n \r\n max\r\n \r\n \r\n \r\n )\r\n \r\n \r\n )\r\n \r\n \r\n u\\in {C}^{0}\\left(\\left[0,{T}_{\\max });\\hspace{0.33em}{\\rm{BUC}}\\left({{\\mathbb{R}}}^{n}))\\cap {C}^{0}\\left(\\left[0,{T}_{\\max });\\hspace{0.33em}{L}^{p}\\left({{\\mathbb{R}}}^{n}))\\cap {C}^{\\infty }\\left({{\\mathbb{R}}}^{n}\\times \\left(0,{T}_{\\max }))\r\n \r\n such that with \r\n \r\n \r\n \r\n v\r\n \r\n Γ\r\n \r\n u\r\n \r\n v:= \\Gamma \\star u\r\n \r\n , and with \r\n \r\n \r\n \r\n Γ\r\n \r\n \\Gamma \r\n \r\n denoting the Newtonian kernel on \r\n \r\n \r\n \r\n \r\n \r\n R\r\n \r\n \r\n n\r\n \r\n \r\n \r\n {{\\mathbb{R}}}^{n}\r\n \r\n , the pair \r\n \r\n \r\n \r\n \r\n (\r\n \r\n u\r\n ,\r\n v\r\n \r\n )\r\n \r\n \r\n \\left(u,v)\r\n \r\n forms a classical solution of (\r\n \r\n \r\n \r\n \r\n \r\n \\star \r\n \r\n ) in \r\n \r\n \r\n \r\n \r\n \r\n R\r\n \r\n \r\n n\r\n \r\n \r\n ×\r\n \r\n (\r\n \r\n 0\r\n ,\r\n \r\n \r\n T\r\n \r\n \r\n max\r\n \r\n \r\n \r\n )\r\n \r\n \r\n {{\\mathbb{R}}}^{n}\\times \\left(0,{T}_{\\max })\r\n \r\n , which has the property that \r\n \r\n \r\n \r\n \r\n if\r\n \r\n \r\n \r\n \r\n T\r\n \r\n \r\n max\r\n \r\n \r\n <\r\n \r\n ,\r\n \r\n \r\n \r\n then both\r\n \r\n \r\n \r\n \r\n \r\n limsup\r\n \r\n \r\n t\r\n \r\n \r\n \r\n T\r\n \r\n \r\n max\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n u\r\n \r\n (\r\n \r\n \r\n ,\r\n t\r\n \r\n )\r\n \r\n \r\n \r\n \r\n \r\n \r\n L\r\n \r\n \r\n \r\n \r\n \r\n \r\n (\r\n \r\n \r\n \r\n R\r\n \r\n \r\n n\r\n \r\n \r\n \r\n )\r\n \r\n \r\n \r\n =\r\n \r\n \r\n \r\n and\r\n \r\n \r\n \r\n \r\n limsup\r\n \r\n \r\n t\r\n \r\n \r\n \r\n T\r\n \r\n \r\n max\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n v\r\n \r\n (\r\n \r\n \r\n ,\r\n t\r\n \r\n )\r\n \r\n \r\n \r\n \r\n \r\n \r\n L\r\n \r\n \r\n \r\n \r\n \r\n \r\n (\r\n \r\n \r\n \r\n R\r\n \r\n \r\n n\r\n \r\n \r\n \r\n )\r\n \r\n \r\n \r\n =\r\n \r\n .\r\n \r\n \\hspace{0.1em}\\text{if}\\hspace{0.1em}\\hspace{0.33em}{T}_{\\max }\\lt \\infty ,\\hspace{1.0em}\\hspace{0.1em}\\text{then both}\\hspace{0.1em}\\hspace{0.33em}\\mathop{\\mathrm{limsup}}\\limits_{t\\nearrow {T}_{\\max }}\\Vert u\\left(\\cdot ,t){\\Vert }_{{L}^{\\infty }\\left({{\\mathbb{R}}}^{n})}=\\infty \\hspace{1.0em}\\hspace{0.1em}\\text{and}\\hspace{0.1em}\\hspace{1.0em}\\mathop{\\mathrm{limsup}}\\limits_{t\\nearrow {T}_{\\max }}\\Vert \\nabla v\\left(\\cdot ,t){\\Vert }_{{L}^{\\infty }\\left({{\\mathbb{R}}}^{n})}=\\infty .\r\n \r\n An exemplary application of this provides a result on global classical solvability in cases when \r\n \r\n \r\n \r\n \r\n S\r\n +\r\n 1\r\n \r\n \r\n | S+{\\bf{1}}| \r\n \r\n is sufficiently small, where \r\n \r\n \r\n \r\n 1\r\n =\r\n diag\r\n \r\n \r\n (\r\n \r\n 1\r\n ,\r\n \r\n \r\n \r\n ,\r\n 1\r\n \r\n )\r\n \r\n \r\n {\\bf{1}}={\\rm{diag}}\\hspace{0.33em}\\left(1,\\ldots ,1)\r\n \r\n ."}],"title":"Classical solutions to Cauchy problems for parabolic–elliptic systems of Keller-Segel type","date_updated":"2024-04-07T12:54:34Z","intvolume":" 21","language":[{"iso":"eng"}],"issue":"1"}