{"publication":"arXiv:2408.14096","department":[{"_id":"841"}],"date_created":"2024-08-27T07:37:39Z","citation":{"short":"G. Bai, B. Kovács, B. Li, ArXiv:2408.14096 (2024).","ieee":"G. Bai, B. Kovács, and B. Li, “Maximal regularity of evolving FEMs for parabolic equations on an  evolving surface,” arXiv:2408.14096. 2024.","apa":"Bai, G., Kovács, B., & Li, B. (2024). Maximal regularity of evolving FEMs for parabolic equations on an  evolving surface. In arXiv:2408.14096.","ama":"Bai G, Kovács B, Li B. Maximal regularity of evolving FEMs for parabolic equations on an  evolving surface. arXiv:240814096. Published online 2024.","chicago":"Bai, Genming, Balázs Kovács, and Buyang Li. “Maximal Regularity of Evolving FEMs for Parabolic Equations on an  Evolving Surface.” ArXiv:2408.14096, 2024.","bibtex":"@article{Bai_Kovács_Li_2024, title={Maximal regularity of evolving FEMs for parabolic equations on an  evolving surface}, journal={arXiv:2408.14096}, author={Bai, Genming and Kovács, Balázs and Li, Buyang}, year={2024} }","mla":"Bai, Genming, et al. “Maximal Regularity of Evolving FEMs for Parabolic Equations on an  Evolving Surface.” ArXiv:2408.14096, 2024."},"title":"Maximal regularity of evolving FEMs for parabolic equations on an evolving surface","user_id":"100441","language":[{"iso":"eng"}],"date_updated":"2024-08-27T07:39:17Z","author":[{"last_name":"Bai","first_name":"Genming","full_name":"Bai, Genming"},{"last_name":"Kovács","first_name":"Balázs","id":"100441","orcid":"0000-0001-9872-3474","full_name":"Kovács, Balázs"},{"last_name":"Li","first_name":"Buyang","full_name":"Li, Buyang"}],"external_id":{"arxiv":["2408.14096"]},"_id":"55781","type":"preprint","abstract":[{"text":"In this paper, we prove that spatially semi-discrete evolving finite element\r\nmethod for parabolic equations on a given evolving hypersurface of arbitrary\r\ndimensions preserves the maximal $L^p$-regularity at the discrete level. We\r\nfirst establish the results on a stationary surface and then extend them, via a\r\nperturbation argument, to the case where the underlying surface is evolving\r\nunder a prescribed velocity field. The proof combines techniques in evolving\r\nfinite element method, properties of Green's functions on (discretised) closed\r\nsurfaces, and local energy estimates for finite element methods","lang":"eng"}],"status":"public","year":"2024"}