Maximal regularity of evolving FEMs for parabolic equations on an evolving surface
In this paper, we prove that spatially semi-discrete evolving finite element
method for parabolic equations on a given evolving hypersurface of arbitrary
dimensions preserves the maximal $L^p$-regularity at the discrete level. We
first establish the results on a stationary surface and then extend them, via a
perturbation argument, to the case where the underlying surface is evolving
under a prescribed velocity field. The proof combines techniques in evolving
finite element method, properties of Green's functions on (discretised) closed
surfaces, and local energy estimates for finite element methods