{"title":"A Distributed Approximation Algorithm for Strongly Connected Dominating-Absorbent Sets in Asymmetric Wireless Ad-Hoc Networks","series_title":"LNCS","has_accepted_license":"1","doi":"10.1007/978-3-642-45346-5_16","publication":"Proceedings of the 9th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS)","project":[{"_id":"1","name":"SFB 901"},{"name":"SFB 901 - Subprojekt A1","_id":"5"},{"name":"SFB 901 - Project Area A","_id":"2"}],"year":"2013","user_id":"477","department":[{"_id":"63"}],"citation":{"chicago":"Markarian, Christine, Friedhelm Meyer auf der Heide, and Michael Schubert. “A Distributed Approximation Algorithm for Strongly Connected Dominating-Absorbent Sets in Asymmetric Wireless Ad-Hoc Networks.” In Proceedings of the 9th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS), 217–27. LNCS, 2013. https://doi.org/10.1007/978-3-642-45346-5_16.","apa":"Markarian, C., Meyer auf der Heide, F., & Schubert, M. (2013). A Distributed Approximation Algorithm for Strongly Connected Dominating-Absorbent Sets in Asymmetric Wireless Ad-Hoc Networks. In Proceedings of the 9th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS) (pp. 217–227). https://doi.org/10.1007/978-3-642-45346-5_16","bibtex":"@inproceedings{Markarian_Meyer auf der Heide_Schubert_2013, series={LNCS}, title={A Distributed Approximation Algorithm for Strongly Connected Dominating-Absorbent Sets in Asymmetric Wireless Ad-Hoc Networks}, DOI={10.1007/978-3-642-45346-5_16}, booktitle={Proceedings of the 9th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS)}, author={Markarian, Christine and Meyer auf der Heide, Friedhelm and Schubert, Michael}, year={2013}, pages={217–227}, collection={LNCS} }","short":"C. Markarian, F. Meyer auf der Heide, M. Schubert, in: Proceedings of the 9th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS), 2013, pp. 217–227.","mla":"Markarian, Christine, et al. “A Distributed Approximation Algorithm for Strongly Connected Dominating-Absorbent Sets in Asymmetric Wireless Ad-Hoc Networks.” Proceedings of the 9th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS), 2013, pp. 217–27, doi:10.1007/978-3-642-45346-5_16.","ieee":"C. Markarian, F. Meyer auf der Heide, and M. Schubert, “A Distributed Approximation Algorithm for Strongly Connected Dominating-Absorbent Sets in Asymmetric Wireless Ad-Hoc Networks,” in Proceedings of the 9th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS), 2013, pp. 217–227.","ama":"Markarian C, Meyer auf der Heide F, Schubert M. A Distributed Approximation Algorithm for Strongly Connected Dominating-Absorbent Sets in Asymmetric Wireless Ad-Hoc Networks. In: Proceedings of the 9th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS). LNCS. ; 2013:217-227. doi:10.1007/978-3-642-45346-5_16"},"file":[{"creator":"florida","relation":"main_file","file_name":"563-978-3-642-45346-5_16.pdf","success":1,"content_type":"application/pdf","date_updated":"2018-03-15T10:25:15Z","access_level":"closed","file_size":348191,"date_created":"2018-03-15T10:25:15Z","file_id":"1278"}],"type":"conference","_id":"563","date_updated":"2022-01-06T07:02:13Z","abstract":[{"text":"Dominating set based virtual backbones are used for rou-ting in wireless ad-hoc networks. Such backbones receive and transmit messages from/to every node in the network. Existing distributed algorithms only consider undirected graphs, which model symmetric networks with uniform transmission ranges. We are particularly interested in the well-established disk graphs, which model asymmetric networks with non-uniform transmission ranges. The corresponding graph theoretic problem seeks a strongly connected dominating-absorbent set of minimum cardinality in a digraph. A subset of nodes in a digraph is a strongly connected dominating-absorbent set if the subgraph induced by these nodes is strongly connected and each node in the graph is either in the set or has both an in-neighbor and an out-neighbor in it. We introduce the first distributed algorithm for this problem in disk graphs. The algorithm gives an O(k^4) -approximation ratio and has a runtime bound of O(Diam) where Diam is the diameter of the graph and k denotes the transmission ratio r_{max}/r_{min} with r_{max} and r_{min} being the maximum and minimum transmission range, respectively. Moreover, we apply our algorithm on the subgraph of disk graphs consisting of only bidirectional edges. Our algorithm gives an O(ln k) -approximation and a runtime bound of O(k^8 log^∗ n) , which, for bounded k , is an optimal approximation for the problem, following Lenzen and Wattenhofer’s Ω(log^∗ n) runtime lower bound for distributed constant approximation in disk graphs.","lang":"eng"}],"file_date_updated":"2018-03-15T10:25:15Z","page":"217-227","date_created":"2017-10-17T12:42:42Z","status":"public","ddc":["040"],"author":[{"id":"37612","full_name":"Markarian, Christine","last_name":"Markarian","first_name":"Christine"},{"last_name":"Meyer auf der Heide","first_name":"Friedhelm","id":"15523","full_name":"Meyer auf der Heide, Friedhelm"},{"full_name":"Schubert, Michael","first_name":"Michael","last_name":"Schubert"}]}