{"status":"public","user_id":"81636","date_created":"2025-01-07T19:31:01Z","date_updated":"2025-01-07T19:32:33Z","citation":{"mla":"Januszewski, Fabian, et al. “Hausdorffness of Certain Nilpotent Cohomology Spaces.” ArXiv:2501.02799, 2025.","chicago":"Januszewski, Fabian, Binyong Sun, and Hao Ying. “Hausdorffness of Certain Nilpotent Cohomology Spaces.” ArXiv:2501.02799, 2025.","apa":"Januszewski, F., Sun, B., & Ying, H. (2025). Hausdorffness of certain nilpotent cohomology spaces. In arXiv:2501.02799.","short":"F. Januszewski, B. Sun, H. Ying, ArXiv:2501.02799 (2025).","ieee":"F. Januszewski, B. Sun, and H. Ying, “Hausdorffness of certain nilpotent cohomology spaces,” arXiv:2501.02799. 2025.","bibtex":"@article{Januszewski_Sun_Ying_2025, title={Hausdorffness of certain nilpotent cohomology spaces}, journal={arXiv:2501.02799}, author={Januszewski, Fabian and Sun, Binyong and Ying, Hao}, year={2025} }","ama":"Januszewski F, Sun B, Ying H. Hausdorffness of certain nilpotent cohomology spaces. arXiv:250102799. Published online 2025."},"external_id":{"arxiv":["2501.02799"]},"abstract":[{"text":"Let $(\\pi,V)$ be a smooth representation of a compact Lie group $G$ on a\r\nquasi-complete locally convex complex topological vector space. We show that\r\nthe Lie algebra cohomology space $\\mathrm{H} ^\\bullet(\\mathfrak{u}, V)$ and the\r\nLie algebra homology space $\\mathrm{H}_\\bullet(\\mathfrak{u}, V)$ are both\r\nHausdorff, where $\\mathfrak{u}$ is the nilpotent radical of a parabolic\r\nsubalgebra of the complexified Lie algebra $\\mathfrak{g}$ of $G$.","lang":"eng"}],"publication":"arXiv:2501.02799","type":"preprint","language":[{"iso":"eng"}],"author":[{"first_name":"Fabian","last_name":"Januszewski","full_name":"Januszewski, Fabian"},{"full_name":"Sun, Binyong","last_name":"Sun","first_name":"Binyong"},{"first_name":"Hao","last_name":"Ying","full_name":"Ying, Hao"}],"title":"Hausdorffness of certain nilpotent cohomology spaces","_id":"58096","year":"2025"}