{"date_created":"2025-01-11T20:11:43Z","abstract":[{"lang":"eng","text":"In this paper, we describe holomorphic quantizations of the cotangent bundle\r\nof a symmetric space of compact type $T^*(U/K)\\cong U_\\mathbb{C}/K_\\mathbb{C}$,\r\nalong Mabuchi rays of $U$-invariant K\\\"ahler structures. At infinite geodesic\r\ntime, the K\\\"ahler polarizations converge to a mixed polarization\r\n$\\mathcal{P}_\\infty$. We show how a generalized coherent state transform\r\nrelates the quantizations along the Mabuchi geodesics such that holomorphic\r\nsections converge, as geodesic time goes to infinity, to distributional\r\n$\\mathcal{P}_\\infty$-polarized sections. Unlike in the case of $T^*U$, the gCST\r\nmapping from the Hilbert space of vertically polarized sections are not\r\nasymptotically unitary due to the appearance of representation dependent\r\nfactors associated to the isotypical decomposition for the $U$-action. In\r\nagreement with the general program outlined in [Bai+23], we also describe how\r\nthe quantization in the limit polarization $\\mathcal{P}_\\infty$ is given by the\r\ndirect sum of the quantizations for all the symplectic reductions relative to\r\nthe invariant torus action associated to the Hamiltonian action of $U$."}],"publication":"arXiv:2404.19697","_id":"58159","external_id":{"arxiv":["2404.19697"]},"status":"public","year":"2024","title":"Fibering polarizations and Mabuchi rays on symmetric spaces of compact type","date_updated":"2025-01-13T15:57:59Z","author":[{"last_name":"Baier","first_name":"Thomas","full_name":"Baier, Thomas"},{"first_name":"Ana Cristina","full_name":"Ferreira, Ana Cristina","last_name":"Ferreira"},{"full_name":"Hilgert, Joachim","first_name":"Joachim","id":"220","last_name":"Hilgert"},{"full_name":"Mourão, José M.","first_name":"José M.","last_name":"Mourão"},{"full_name":"Nunes, João P.","first_name":"João P.","last_name":"Nunes"}],"user_id":"220","citation":{"apa":"Baier, T., Ferreira, A. C., Hilgert, J., Mourão, J. M., & Nunes, J. P. (2024). Fibering polarizations and Mabuchi rays on symmetric spaces of compact type. In arXiv:2404.19697.","bibtex":"@article{Baier_Ferreira_Hilgert_Mourão_Nunes_2024, title={Fibering polarizations and Mabuchi rays on symmetric spaces of compact type}, journal={arXiv:2404.19697}, author={Baier, Thomas and Ferreira, Ana Cristina and Hilgert, Joachim and Mourão, José M. and Nunes, João P.}, year={2024} }","chicago":"Baier, Thomas, Ana Cristina Ferreira, Joachim Hilgert, José M. Mourão, and João P. Nunes. “Fibering Polarizations and Mabuchi Rays on Symmetric Spaces of Compact Type.” ArXiv:2404.19697, 2024.","ieee":"T. Baier, A. C. Ferreira, J. Hilgert, J. M. Mourão, and J. P. Nunes, “Fibering polarizations and Mabuchi rays on symmetric spaces of compact type,” arXiv:2404.19697. 2024.","short":"T. Baier, A.C. Ferreira, J. Hilgert, J.M. Mourão, J.P. Nunes, ArXiv:2404.19697 (2024).","mla":"Baier, Thomas, et al. “Fibering Polarizations and Mabuchi Rays on Symmetric Spaces of Compact Type.” ArXiv:2404.19697, 2024.","ama":"Baier T, Ferreira AC, Hilgert J, Mourão JM, Nunes JP. Fibering polarizations and Mabuchi rays on symmetric spaces of compact type. arXiv:240419697. Published online 2024."},"language":[{"iso":"eng"}],"type":"preprint"}