{"status":"public","date_updated":"2025-08-25T13:00:29Z","user_id":"63958","citation":{"mla":"Potthast, Nicolas. “On the Asymptotics of Elementary-Abelian Extensions of Local and Global Function Fields.” Transactions of the American Mathematical Society, American Mathematical Society (AMS), 2025, doi:10.1090/tran/9509.","bibtex":"@article{Potthast_2025, title={On the asymptotics of elementary-abelian extensions of local and global function fields}, DOI={10.1090/tran/9509}, journal={Transactions of the American Mathematical Society}, publisher={American Mathematical Society (AMS)}, author={Potthast, Nicolas}, year={2025} }","ama":"Potthast N. On the asymptotics of elementary-abelian extensions of local and global function fields. Transactions of the American Mathematical Society. Published online 2025. doi:10.1090/tran/9509","apa":"Potthast, N. (2025). On the asymptotics of elementary-abelian extensions of local and global function fields. Transactions of the American Mathematical Society. https://doi.org/10.1090/tran/9509","short":"N. Potthast, Transactions of the American Mathematical Society (2025).","chicago":"Potthast, Nicolas. “On the Asymptotics of Elementary-Abelian Extensions of Local and Global Function Fields.” Transactions of the American Mathematical Society, 2025. https://doi.org/10.1090/tran/9509.","ieee":"N. Potthast, “On the asymptotics of elementary-abelian extensions of local and global function fields,” Transactions of the American Mathematical Society, 2025, doi: 10.1090/tran/9509."},"author":[{"last_name":"Potthast","id":"63958","full_name":"Potthast, Nicolas","first_name":"Nicolas"}],"title":"On the asymptotics of elementary-abelian extensions of local and global function fields","publication_identifier":{"issn":["1088-6850","0002-9947"]},"publication":"Transactions of the American Mathematical Society","year":"2025","doi":"10.1090/tran/9509","abstract":[{"lang":"eng","text":"

We determine the distribution of discriminants of wildly ramified elementary-abelian extensions of local and global function fields in characteristic \r\n\r\n \r\n p\r\n p\r\n \r\n\r\n. For local and rational function fields, we also give precise formulae for the number of elementary-abelian extensions with a fixed discriminant divisor, which describe a local-global principle.

"}],"publication_status":"published","_id":"60993","date_created":"2025-08-25T12:37:47Z","type":"journal_article","publisher":"American Mathematical Society (AMS)","language":[{"iso":"eng"}]}