{"language":[{"iso":"eng"}],"abstract":[{"text":"Abstract\r\n \r\n For\r\n \r\n \r\n $$p>2$$\r\n \r\n \r\n p\r\n >\r\n 2\r\n \r\n \r\n \r\n \r\n , the equation\r\n \r\n \r\n $$\\begin{aligned} u_t = u^p u_{xx}, \\qquad x\\in \\mathbb {R}, \\ t\\in \\mathbb {R}, \\end{aligned}$$\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n u\r\n t\r\n \r\n =\r\n \r\n u\r\n p\r\n \r\n \r\n u\r\n \r\n xx\r\n \r\n \r\n ,\r\n \r\n x\r\n ∈\r\n R\r\n ,\r\n \r\n t\r\n ∈\r\n R\r\n ,\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n is shown to admit positive and spatially increasing smooth solutions on all of\r\n \r\n \r\n $$\\mathbb {R}\\times \\mathbb {R}$$\r\n \r\n \r\n R\r\n ×\r\n R\r\n \r\n \r\n \r\n \r\n which are precisely of the form of an accelerating wave for\r\n \r\n \r\n $$t<0$$\r\n \r\n \r\n t\r\n <\r\n 0\r\n \r\n \r\n \r\n \r\n , and of a wave slowing down for\r\n \r\n \r\n $$t>0$$\r\n \r\n \r\n t\r\n >\r\n 0\r\n \r\n \r\n \r\n \r\n . These solutions satisfy\r\n \r\n \r\n $$u(\\cdot ,t)\\rightarrow 0$$\r\n \r\n \r\n u\r\n (\r\n ·\r\n ,\r\n t\r\n )\r\n →\r\n 0\r\n \r\n \r\n \r\n \r\n in\r\n \r\n \r\n $$L^\\infty _{loc}(\\mathbb {R})$$\r\n \r\n \r\n \r\n L\r\n \r\n loc\r\n \r\n ∞\r\n \r\n \r\n (\r\n R\r\n )\r\n \r\n \r\n \r\n \r\n \r\n as\r\n \r\n \r\n $$t\\rightarrow + \\infty $$\r\n \r\n \r\n t\r\n →\r\n +\r\n ∞\r\n \r\n \r\n \r\n \r\n and as\r\n \r\n \r\n $$t\\rightarrow -\\infty $$\r\n \r\n \r\n t\r\n →\r\n -\r\n ∞\r\n \r\n \r\n \r\n \r\n , and exhibit a yet apparently undiscovered phenomenon of transient rapid spatial growth, in the sense that\r\n \r\n \r\n $$\\begin{aligned} \\lim _{x\\rightarrow +\\infty } x^{-1} u(x,t) \\quad \\text{ exists } \\text{ for } \\text{ all } t<0, \\end{aligned}$$\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n lim\r\n \r\n x\r\n →\r\n +\r\n ∞\r\n \r\n \r\n \r\n x\r\n \r\n -\r\n 1\r\n \r\n \r\n u\r\n \r\n (\r\n x\r\n ,\r\n t\r\n )\r\n \r\n \r\n \r\n exists\r\n \r\n \r\n for\r\n \r\n \r\n all\r\n \r\n t\r\n <\r\n 0\r\n ,\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n that\r\n \r\n \r\n $$\\begin{aligned} \\lim _{x\\rightarrow +\\infty } x^{-\\frac{2}{p}} u(x,t) \\quad \\text{ exists } \\text{ for } \\text{ all } t>0, \\end{aligned}$$\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n lim\r\n \r\n x\r\n →\r\n +\r\n ∞\r\n \r\n \r\n \r\n x\r\n \r\n -\r\n \r\n 2\r\n p\r\n \r\n \r\n \r\n u\r\n \r\n (\r\n x\r\n ,\r\n t\r\n )\r\n \r\n \r\n \r\n exists\r\n \r\n \r\n for\r\n \r\n \r\n all\r\n \r\n t\r\n >\r\n 0\r\n ,\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n but that\r\n \r\n \r\n $$\\begin{aligned} u(x,0)=K e^{\\alpha x} \\qquad \\text{ for } \\text{ all } x\\in \\mathbb {R}\\end{aligned}$$\r\n \r\n \r\n \r\n \r\n \r\n \r\n u\r\n \r\n (\r\n x\r\n ,\r\n 0\r\n )\r\n \r\n =\r\n K\r\n \r\n e\r\n \r\n α\r\n x\r\n \r\n \r\n \r\n \r\n for\r\n \r\n \r\n all\r\n \r\n x\r\n ∈\r\n R\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n with some\r\n \r\n \r\n $$K>0$$\r\n \r\n \r\n K\r\n >\r\n 0\r\n \r\n \r\n \r\n \r\n and\r\n \r\n \r\n $$\\alpha >0$$\r\n \r\n \r\n α\r\n >\r\n 0\r\n \r\n \r\n \r\n \r\n .\r\n ","lang":"eng"}],"doi":"10.1007/s41808-025-00316-9","publication_status":"published","status":"public","author":[{"first_name":"Celina","last_name":"Hanfland","full_name":"Hanfland, Celina"},{"full_name":"Winkler, Michael","last_name":"Winkler","first_name":"Michael","id":"31496"}],"volume":11,"type":"journal_article","publication_identifier":{"issn":["2296-9020","2296-9039"]},"intvolume":" 11","date_created":"2025-12-18T18:57:21Z","date_updated":"2025-12-18T20:16:49Z","year":"2025","page":"2041-2063","_id":"63242","title":"Exactly wave-type homoclinic orbits and emergence of transient exponential growth in a super-fast diffusion equation","citation":{"ama":"Hanfland C, Winkler M. Exactly wave-type homoclinic orbits and emergence of transient exponential growth in a super-fast diffusion equation. Journal of Elliptic and Parabolic Equations. 2025;11(3):2041-2063. doi:10.1007/s41808-025-00316-9","short":"C. Hanfland, M. Winkler, Journal of Elliptic and Parabolic Equations 11 (2025) 2041–2063.","chicago":"Hanfland, Celina, and Michael Winkler. “Exactly Wave-Type Homoclinic Orbits and Emergence of Transient Exponential Growth in a Super-Fast Diffusion Equation.” Journal of Elliptic and Parabolic Equations 11, no. 3 (2025): 2041–63. https://doi.org/10.1007/s41808-025-00316-9.","apa":"Hanfland, C., & Winkler, M. (2025). Exactly wave-type homoclinic orbits and emergence of transient exponential growth in a super-fast diffusion equation. Journal of Elliptic and Parabolic Equations, 11(3), 2041–2063. https://doi.org/10.1007/s41808-025-00316-9","mla":"Hanfland, Celina, and Michael Winkler. “Exactly Wave-Type Homoclinic Orbits and Emergence of Transient Exponential Growth in a Super-Fast Diffusion Equation.” Journal of Elliptic and Parabolic Equations, vol. 11, no. 3, Springer Science and Business Media LLC, 2025, pp. 2041–63, doi:10.1007/s41808-025-00316-9.","ieee":"C. Hanfland and M. Winkler, “Exactly wave-type homoclinic orbits and emergence of transient exponential growth in a super-fast diffusion equation,” Journal of Elliptic and Parabolic Equations, vol. 11, no. 3, pp. 2041–2063, 2025, doi: 10.1007/s41808-025-00316-9.","bibtex":"@article{Hanfland_Winkler_2025, title={Exactly wave-type homoclinic orbits and emergence of transient exponential growth in a super-fast diffusion equation}, volume={11}, DOI={10.1007/s41808-025-00316-9}, number={3}, journal={Journal of Elliptic and Parabolic Equations}, publisher={Springer Science and Business Media LLC}, author={Hanfland, Celina and Winkler, Michael}, year={2025}, pages={2041–2063} }"},"publisher":"Springer Science and Business Media LLC","publication":"Journal of Elliptic and Parabolic Equations","user_id":"31496","issue":"3"}