{"year":"2025","citation":{"ama":"Winkler M. Large-data regular solutions in a one-dimensional thermoviscoelastic evolution problem involving temperature-dependent viscosities. Journal of Evolution Equations. 2025;25(4). doi:10.1007/s00028-025-01144-z","apa":"Winkler, M. (2025). Large-data regular solutions in a one-dimensional thermoviscoelastic evolution problem involving temperature-dependent viscosities. Journal of Evolution Equations, 25(4), Article 108. https://doi.org/10.1007/s00028-025-01144-z","chicago":"Winkler, Michael. “Large-Data Regular Solutions in a One-Dimensional Thermoviscoelastic Evolution Problem Involving Temperature-Dependent Viscosities.” Journal of Evolution Equations 25, no. 4 (2025). https://doi.org/10.1007/s00028-025-01144-z.","short":"M. Winkler, Journal of Evolution Equations 25 (2025).","bibtex":"@article{Winkler_2025, title={Large-data regular solutions in a one-dimensional thermoviscoelastic evolution problem involving temperature-dependent viscosities}, volume={25}, DOI={10.1007/s00028-025-01144-z}, number={4108}, journal={Journal of Evolution Equations}, publisher={Springer Science and Business Media LLC}, author={Winkler, Michael}, year={2025} }","mla":"Winkler, Michael. “Large-Data Regular Solutions in a One-Dimensional Thermoviscoelastic Evolution Problem Involving Temperature-Dependent Viscosities.” Journal of Evolution Equations, vol. 25, no. 4, 108, Springer Science and Business Media LLC, 2025, doi:10.1007/s00028-025-01144-z.","ieee":"M. Winkler, “Large-data regular solutions in a one-dimensional thermoviscoelastic evolution problem involving temperature-dependent viscosities,” Journal of Evolution Equations, vol. 25, no. 4, Art. no. 108, 2025, doi: 10.1007/s00028-025-01144-z."},"title":"Large-data regular solutions in a one-dimensional thermoviscoelastic evolution problem involving temperature-dependent viscosities","_id":"63249","user_id":"31496","publication":"Journal of Evolution Equations","publisher":"Springer Science and Business Media LLC","issue":"4","article_number":"108","publication_status":"published","doi":"10.1007/s00028-025-01144-z","abstract":[{"lang":"eng","text":"Abstract\r\n \r\n The model\r\n \r\n \r\n $$\\begin{aligned} \\left\\{ \\begin{array}{l}u_{tt} = \\big (\\gamma (\\Theta ) u_{xt}\\big )_x + au_{xx} - \\big (f(\\Theta )\\big )_x, \\\\[1mm] \\Theta _t = \\Theta _{xx} + \\gamma (\\Theta ) u_{xt}^2 - f(\\Theta ) u_{xt}, \\end{array} \\right. \\end{aligned}$$\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n u\r\n \r\n tt\r\n \r\n \r\n =\r\n \r\n (\r\n \r\n γ\r\n \r\n (\r\n Θ\r\n )\r\n \r\n \r\n u\r\n \r\n xt\r\n \r\n \r\n \r\n \r\n )\r\n \r\n x\r\n \r\n +\r\n a\r\n \r\n u\r\n \r\n xx\r\n \r\n \r\n -\r\n \r\n (\r\n \r\n f\r\n \r\n (\r\n Θ\r\n )\r\n \r\n \r\n \r\n )\r\n \r\n x\r\n \r\n ,\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n [\r\n 1\r\n m\r\n m\r\n ]\r\n \r\n \r\n Θ\r\n t\r\n \r\n =\r\n \r\n Θ\r\n \r\n xx\r\n \r\n \r\n +\r\n γ\r\n \r\n (\r\n Θ\r\n )\r\n \r\n \r\n u\r\n \r\n xt\r\n \r\n 2\r\n \r\n -\r\n f\r\n \r\n (\r\n Θ\r\n )\r\n \r\n \r\n u\r\n \r\n xt\r\n \r\n \r\n ,\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n for thermoviscoelastic evolution in one-dimensional Kelvin–Voigt materials is considered. By means of an approach based on maximal Sobolev regularity theory of scalar parabolic equations, it is shown that if\r\n \r\n \r\n $$\\gamma _0>0$$\r\n \r\n \r\n \r\n γ\r\n 0\r\n \r\n >\r\n 0\r\n \r\n \r\n \r\n \r\n is fixed, then there exists\r\n \r\n \r\n $$\\delta =\\delta (\\gamma _0)>0$$\r\n \r\n \r\n δ\r\n =\r\n δ\r\n (\r\n \r\n γ\r\n 0\r\n \r\n )\r\n >\r\n 0\r\n \r\n \r\n \r\n \r\n with the property that for suitably regular initial data of arbitrary size an associated initial boundary value problem posed in an open bounded interval admits a global classical solution whenever\r\n \r\n \r\n $$\\gamma \\in C^2([0,\\infty ))$$\r\n \r\n \r\n γ\r\n \r\n \r\n C\r\n 2\r\n \r\n \r\n (\r\n \r\n [\r\n 0\r\n ,\r\n \r\n )\r\n \r\n )\r\n \r\n \r\n \r\n \r\n \r\n and\r\n \r\n \r\n $$f\\in C^2([0,\\infty ))$$\r\n \r\n \r\n f\r\n \r\n \r\n C\r\n 2\r\n \r\n \r\n (\r\n \r\n [\r\n 0\r\n ,\r\n \r\n )\r\n \r\n )\r\n \r\n \r\n \r\n \r\n \r\n are such that\r\n \r\n \r\n $$f(0)=0$$\r\n \r\n \r\n f\r\n (\r\n 0\r\n )\r\n =\r\n 0\r\n \r\n \r\n \r\n \r\n and\r\n \r\n \r\n $$|f(\\xi )| \\le K_f \\cdot (\\xi +1)^\\alpha $$\r\n \r\n \r\n \r\n |\r\n f\r\n \r\n (\r\n ξ\r\n )\r\n \r\n |\r\n \r\n \r\n \r\n K\r\n f\r\n \r\n ·\r\n \r\n \r\n (\r\n ξ\r\n +\r\n 1\r\n )\r\n \r\n α\r\n \r\n \r\n \r\n \r\n \r\n for all\r\n \r\n \r\n $$\\xi \\ge 0$$\r\n \r\n \r\n ξ\r\n \r\n 0\r\n \r\n \r\n \r\n \r\n and some\r\n \r\n \r\n $$K_f>0$$\r\n \r\n \r\n \r\n K\r\n f\r\n \r\n >\r\n 0\r\n \r\n \r\n \r\n \r\n and\r\n \r\n \r\n $$\\alpha <\\frac{3}{2}$$\r\n \r\n \r\n α\r\n <\r\n \r\n 3\r\n 2\r\n \r\n \r\n \r\n \r\n \r\n , and that\r\n \r\n \r\n $$\\begin{aligned} \\gamma _0 \\le \\gamma (\\xi ) \\le \\gamma _0 + \\delta \\qquad \\hbox {for all } \\xi \\ge 0. \\end{aligned}$$\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n γ\r\n 0\r\n \r\n \r\n γ\r\n \r\n (\r\n ξ\r\n )\r\n \r\n \r\n \r\n γ\r\n 0\r\n \r\n +\r\n δ\r\n \r\n for all\r\n \r\n ξ\r\n \r\n 0\r\n .\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n This is supplemented by a statement on global existence of certain strong solutions, particularly continuous in both components, under weaker conditions on the initial data.\r\n "}],"language":[{"iso":"eng"}],"author":[{"last_name":"Winkler","full_name":"Winkler, Michael","first_name":"Michael","id":"31496"}],"status":"public","volume":25,"publication_identifier":{"issn":["1424-3199","1424-3202"]},"type":"journal_article","intvolume":" 25","date_updated":"2025-12-18T20:13:11Z","date_created":"2025-12-18T19:02:51Z"}