{"year":"2024","title":"A critical exponent in a quasilinear Keller–Segel system with arbitrarily fast decaying diffusivities accounting for volume-filling effects","citation":{"ama":"Stinner C, Winkler M. A critical exponent in a quasilinear Keller–Segel system with arbitrarily fast decaying diffusivities accounting for volume-filling effects. Journal of Evolution Equations. 2024;24(2). doi:10.1007/s00028-024-00954-x","short":"C. Stinner, M. Winkler, Journal of Evolution Equations 24 (2024).","apa":"Stinner, C., & Winkler, M. (2024). A critical exponent in a quasilinear Keller–Segel system with arbitrarily fast decaying diffusivities accounting for volume-filling effects. Journal of Evolution Equations, 24(2), Article 26. https://doi.org/10.1007/s00028-024-00954-x","chicago":"Stinner, Christian, and Michael Winkler. “A Critical Exponent in a Quasilinear Keller–Segel System with Arbitrarily Fast Decaying Diffusivities Accounting for Volume-Filling Effects.” Journal of Evolution Equations 24, no. 2 (2024). https://doi.org/10.1007/s00028-024-00954-x.","mla":"Stinner, Christian, and Michael Winkler. “A Critical Exponent in a Quasilinear Keller–Segel System with Arbitrarily Fast Decaying Diffusivities Accounting for Volume-Filling Effects.” Journal of Evolution Equations, vol. 24, no. 2, 26, Springer Science and Business Media LLC, 2024, doi:10.1007/s00028-024-00954-x.","ieee":"C. Stinner and M. Winkler, “A critical exponent in a quasilinear Keller–Segel system with arbitrarily fast decaying diffusivities accounting for volume-filling effects,” Journal of Evolution Equations, vol. 24, no. 2, Art. no. 26, 2024, doi: 10.1007/s00028-024-00954-x.","bibtex":"@article{Stinner_Winkler_2024, title={A critical exponent in a quasilinear Keller–Segel system with arbitrarily fast decaying diffusivities accounting for volume-filling effects}, volume={24}, DOI={10.1007/s00028-024-00954-x}, number={226}, journal={Journal of Evolution Equations}, publisher={Springer Science and Business Media LLC}, author={Stinner, Christian and Winkler, Michael}, year={2024} }"},"_id":"63257","user_id":"31496","publisher":"Springer Science and Business Media LLC","publication":"Journal of Evolution Equations","issue":"2","article_number":"26","doi":"10.1007/s00028-024-00954-x","publication_status":"published","abstract":[{"text":"AbstractThe quasilinear Keller–Segel system$$\\begin{aligned} \\left\\{ \\begin{array}{l} u_t=\\nabla \\cdot (D(u)\\nabla u) - \\nabla \\cdot (S(u)\\nabla v), \\\\ v_t=\\Delta v-v+u, \\end{array}\\right. \\end{aligned}$$ut=∇·(D(u)∇u)-∇·(S(u)∇v),vt=Δv-v+u,endowed with homogeneous Neumann boundary conditions is considered in a bounded domain$$\\Omega \\subset {\\mathbb {R}}^n$$Ω⊂Rn,$$n \\ge 3$$n≥3, with smooth boundary for sufficiently regular functionsDandSsatisfying$$D>0$$D>0on$$[0,\\infty )$$[0,∞),$$S>0$$S>0on$$(0,\\infty )$$(0,∞)and$$S(0)=0$$S(0)=0. On the one hand, it is shown that if$$\\frac{S}{D}$$SDsatisfies the subcritical growth condition$$\\begin{aligned} \\frac{S(s)}{D(s)} \\le C s^\\alpha \\qquad \\text{ for } \\text{ all } s\\ge 1 \\qquad \\text{ with } \\text{ some } \\alpha < \\frac{2}{n} \\end{aligned}$$S(s)D(s)≤Csαforalls≥1withsomeα<2nand$$C>0$$C>0, then for any sufficiently regular initial data there exists a global weak energy solution such that$${ \\mathrm{{ess}}} \\sup _{t>0} \\Vert u(t) \\Vert _{L^p(\\Omega )}<\\infty $$esssupt>0‖u(t)‖Lp(Ω)<∞for some$$p > \\frac{2n}{n+2}$$p>2nn+2. On the other hand, if$$\\frac{S}{D}$$SDsatisfies the supercritical growth condition$$\\begin{aligned} \\frac{S(s)}{D(s)} \\ge c s^\\alpha \\qquad \\text{ for } \\text{ all } s\\ge 1 \\qquad \\text{ with } \\text{ some } \\alpha > \\frac{2}{n} \\end{aligned}$$S(s)D(s)≥csαforalls≥1withsomeα>2nand$$c>0$$c>0, then the nonexistence of a global weak energy solution having the boundedness property stated above is shown for some initial data in the radial setting. This establishes some criticality of the value$$\\alpha = \\frac{2}{n}$$α=2nfor$$n \\ge 3$$n≥3, without any additional assumption on the behavior ofD(s) as$$s \\rightarrow \\infty $$s→∞, in particular without requiring any algebraic lower bound forD. When applied to the Keller–Segel system with volume-filling effect for probability distribution functions of the type$$Q(s) = \\exp (-s^\\beta )$$Q(s)=exp(-sβ),$$s \\ge 0$$s≥0, for global solvability the exponent$$\\beta = \\frac{n-2}{n}$$β=n-2nis seen to be critical.","lang":"eng"}],"language":[{"iso":"eng"}],"author":[{"first_name":"Christian","full_name":"Stinner, Christian","last_name":"Stinner"},{"full_name":"Winkler, Michael","last_name":"Winkler","id":"31496","first_name":"Michael"}],"status":"public","publication_identifier":{"issn":["1424-3199","1424-3202"]},"type":"journal_article","volume":24,"date_updated":"2025-12-18T20:14:21Z","date_created":"2025-12-18T19:06:36Z","intvolume":" 24"}