{"publication_status":"published","publication_identifier":{"issn":["0021-2172","1565-8511"]},"user_id":"31496","page":"93-127","year":"2024","publication":"Israel Journal of Mathematics","doi":"10.1007/s11856-024-2618-9","intvolume":" 263","_id":"63262","abstract":[{"text":"AbstractRadially symmetric global unbounded solutions of the chemotaxis system $$\\left\\{ {\\matrix{{{u_t} = \\nabla \\cdot (D(u)\\nabla u) - \\nabla \\cdot (uS(u)\\nabla v),} \\hfill & {} \\hfill \\cr {0 = \\Delta v - \\mu + u,} \\hfill & {\\mu = {1 \\over {|\\Omega |}}\\int_\\Omega {u,} } \\hfill \\cr } } \\right.$$\r\n \r\n \r\n {\r\n \r\n \r\n \r\n \r\n \r\n \r\n u\r\n t\r\n \r\n =\r\n ∇\r\n ⋅\r\n (\r\n D\r\n (\r\n u\r\n )\r\n ∇\r\n u\r\n )\r\n −\r\n ∇\r\n ⋅\r\n (\r\n u\r\n S\r\n (\r\n u\r\n )\r\n ∇\r\n v\r\n )\r\n ,\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n 0\r\n =\r\n Δ\r\n v\r\n −\r\n μ\r\n +\r\n u\r\n ,\r\n \r\n \r\n \r\n \r\n μ\r\n =\r\n \r\n 1\r\n \r\n |\r\n Ω\r\n |\r\n \r\n \r\n \r\n \r\n \r\n ∫\r\n Ω\r\n \r\n \r\n u\r\n ,\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n are considered in a ball Ω = BR(0) ⊂ ℝn, where n ≥ 3 and R > 0.Under the assumption that D and S suitably generalize the prototypes given by D(ξ) = (ξ + ι)m−1 and S(ξ) = (ξ + 1)−λ−1 for all ξ > 0 and some m ∈ ℝ, λ >0 and ι ≥ 0 fulfilling $$m + \\lambda < 1 - {2 \\over n}$$\r\n m\r\n +\r\n λ\r\n <\r\n 1\r\n −\r\n \r\n 2\r\n n\r\n \r\n , a considerably large set of initial data u0 is found to enforce a complete mass aggregation in infinite time in the sense that for any such u0, an associated Neumann type initial-boundary value problem admits a global classical solution (u, v) satisfying $${1 \\over C} \\cdot {(t + 1)^{{1 \\over \\lambda }}} \\le ||u( \\cdot ,t)|{|_{{L^\\infty }(\\Omega )}} \\le C \\cdot {(t + 1)^{{1 \\over \\lambda }}}\\,\\,\\,{\\rm{for}}\\,\\,{\\rm{all}}\\,\\,t > 0$$\r\n \r\n \r\n 1\r\n C\r\n \r\n \r\n ⋅\r\n \r\n (\r\n t\r\n +\r\n 1\r\n \r\n )\r\n \r\n \r\n \r\n 1\r\n λ\r\n \r\n \r\n \r\n \r\n \r\n ≤\r\n \r\n |\r\n \r\n \r\n |\r\n \r\n u\r\n (\r\n ⋅\r\n ,\r\n t\r\n )\r\n \r\n |\r\n \r\n \r\n \r\n \r\n |\r\n \r\n \r\n \r\n \r\n L\r\n ∞\r\n \r\n \r\n (\r\n Ω\r\n )\r\n \r\n \r\n \r\n ≤\r\n C\r\n ⋅\r\n \r\n (\r\n t\r\n +\r\n 1\r\n \r\n )\r\n \r\n \r\n \r\n 1\r\n λ\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n f\r\n o\r\n r\r\n \r\n \r\n \r\n \r\n \r\n \r\n a\r\n l\r\n l\r\n \r\n \r\n \r\n \r\n t\r\n >\r\n 0\r\n as well as $$||u( \\cdot \\,,t)|{|_{{L^1}(\\Omega \\backslash {B_{{r_0}}}(0))}} \\to 0\\,\\,\\,{\\rm{as}}\\,\\,t \\to \\infty \\,\\,\\,{\\rm{for}}\\,\\,{\\rm{all}}\\,\\,{r_0} \\in (0,R)$$\r\n |\r\n |\r\n u\r\n (\r\n ⋅\r\n ,\r\n t\r\n )\r\n |\r\n \r\n |\r\n \r\n \r\n L\r\n 1\r\n \r\n (\r\n Ω\r\n \\\r\n \r\n B\r\n \r\n \r\n r\r\n 0\r\n \r\n \r\n \r\n (\r\n 0\r\n )\r\n )\r\n \r\n \r\n →\r\n 0\r\n as\r\n t\r\n →\r\n ∞\r\n for all\r\n \r\n r\r\n 0\r\n \r\n ∈\r\n (\r\n 0\r\n ,\r\n R\r\n )\r\n with some C > 0.","lang":"eng"}],"date_created":"2025-12-18T19:08:34Z","status":"public","volume":263,"issue":"1","title":"Complete infinite-time mass aggregation in a quasilinear Keller–Segel system","citation":{"short":"M. Winkler, Israel Journal of Mathematics 263 (2024) 93–127.","bibtex":"@article{Winkler_2024, title={Complete infinite-time mass aggregation in a quasilinear Keller–Segel system}, volume={263}, DOI={10.1007/s11856-024-2618-9}, number={1}, journal={Israel Journal of Mathematics}, publisher={Springer Science and Business Media LLC}, author={Winkler, Michael}, year={2024}, pages={93–127} }","chicago":"Winkler, Michael. “Complete Infinite-Time Mass Aggregation in a Quasilinear Keller–Segel System.” Israel Journal of Mathematics 263, no. 1 (2024): 93–127. https://doi.org/10.1007/s11856-024-2618-9.","ama":"Winkler M. Complete infinite-time mass aggregation in a quasilinear Keller–Segel system. Israel Journal of Mathematics. 2024;263(1):93-127. doi:10.1007/s11856-024-2618-9","ieee":"M. Winkler, “Complete infinite-time mass aggregation in a quasilinear Keller–Segel system,” Israel Journal of Mathematics, vol. 263, no. 1, pp. 93–127, 2024, doi: 10.1007/s11856-024-2618-9.","mla":"Winkler, Michael. “Complete Infinite-Time Mass Aggregation in a Quasilinear Keller–Segel System.” Israel Journal of Mathematics, vol. 263, no. 1, Springer Science and Business Media LLC, 2024, pp. 93–127, doi:10.1007/s11856-024-2618-9.","apa":"Winkler, M. (2024). Complete infinite-time mass aggregation in a quasilinear Keller–Segel system. Israel Journal of Mathematics, 263(1), 93–127. https://doi.org/10.1007/s11856-024-2618-9"},"author":[{"full_name":"Winkler, Michael","last_name":"Winkler","first_name":"Michael","id":"31496"}],"date_updated":"2025-12-18T20:14:59Z","type":"journal_article","language":[{"iso":"eng"}],"publisher":"Springer Science and Business Media LLC"}