{"abstract":[{"lang":"eng","text":"AbstractThe chemotaxis–Stokes systemnt+un=(D(n)n)(nS(x,n,c)c),ct+uc=Δcnc,ut=Δu+P+nΦ,u=0,\\left\\{\\begin{array}{l}{n}_{t}+u\\cdot \\nabla n=\\nabla \\cdot (D\\left(n)\\nabla n)-\\nabla \\cdot (nS\\left(x,n,c)\\cdot \\nabla c),\\\\ {c}_{t}+u\\cdot \\nabla c=\\Delta c-nc,\\\\ {u}_{t}=\\Delta u+\\nabla P+n\\nabla \\Phi ,\\hspace{1.0em}\\nabla \\cdot u=0,\\end{array}\\right.is considered in a smoothly bounded convex domainΩR3\\Omega \\subset {{\\mathbb{R}}}^{3}, with given suitably regular functionsD:[0,)[0,)D:{[}0,\\infty )\\to {[}0,\\infty ),S:Ω¯×[0,)×(0,)R3×3S:\\overline{\\Omega }\\times {[}0,\\infty )\\times \\left(0,\\infty )\\to {{\\mathbb{R}}}^{3\\times 3}andΦ:Ω¯R\\Phi :\\overline{\\Omega }\\to {\\mathbb{R}}such thatD>0D\\gt 0on(0,)\\left(0,\\infty ). It is shown that if with some nondecreasingS0:(0,)(0,){S}_{0}:\\left(0,\\infty )\\to \\left(0,\\infty )we haveS(x,n,c)S0(c)c12for all(x,n,c)Ω¯×[0,)×(0,),| S\\left(x,n,c)| \\le \\frac{{S}_{0}\\left(c)}{{c}^{\\tfrac{1}{2}}}\\hspace{1.0em}\\hspace{0.1em}\\text{for all}\\hspace{0.1em}\\hspace{0.33em}\\left(x,n,c)\\in \\overline{\\Omega }\\times {[}0,\\infty )\\times \\left(0,\\infty ),then for allM>0M\\gt 0there existsL(M)>0L\\left(M)\\gt 0such that wheneverliminfnD(n)>L(M)andliminfn0D(n)n>0,\\mathop{\\mathrm{liminf}}\\limits_{n\\to \\infty }D\\left(n)\\gt L\\left(M)\\hspace{1.0em}\\hspace{0.1em}\\text{and}\\hspace{0.1em}\\hspace{1.0em}\\mathop{\\mathrm{liminf}}\\limits_{n\\searrow 0}\\frac{D\\left(n)}{n}\\gt 0,for all sufficiently regular initial data(n0,c0,u0)\\left({n}_{0},{c}_{0},{u}_{0})fulfillingc0L(Ω)M\\Vert {c}_{0}{\\Vert }_{{L}^{\\infty }\\left(\\Omega )}\\le Man associated no-flux/no-flux/Dirichlet initial-boundary value problem admits a global bounded weak solution, classical if additionallyD(0)>0D\\left(0)\\gt 0. When combined with previously known results, this particularly implies global existence of bounded solutions whenD(n)=nm1D\\left(n)={n}^{m-1},n0n\\ge 0, with arbitrarym>1m\\gt 1, but beyond this asserts global boundedness also in the presence of diffusivities which exhibit arbitrarily slow divergence to++\\inftyat large densities and of possibly singular chemotactic sensitivities."}],"language":[{"iso":"eng"}],"doi":"10.1515/ans-2022-0004","publication_status":"published","status":"public","author":[{"last_name":"Winkler","full_name":"Winkler, Michael","id":"31496","first_name":"Michael"}],"volume":22,"publication_identifier":{"issn":["2169-0375"]},"type":"journal_article","intvolume":" 22","date_updated":"2025-12-18T20:05:30Z","date_created":"2025-12-18T19:29:40Z","year":"2022","page":"88-117","_id":"63310","citation":{"ieee":"M. Winkler, “Chemotaxis-Stokes interaction with very weak diffusion enhancement: Blow-up exclusion via detection of absorption-induced entropy structures involving multiplicative couplings,” Advanced Nonlinear Studies, vol. 22, no. 1, pp. 88–117, 2022, doi: 10.1515/ans-2022-0004.","mla":"Winkler, Michael. “Chemotaxis-Stokes Interaction with Very Weak Diffusion Enhancement: Blow-up Exclusion via Detection of Absorption-Induced Entropy Structures Involving Multiplicative Couplings.” Advanced Nonlinear Studies, vol. 22, no. 1, Walter de Gruyter GmbH, 2022, pp. 88–117, doi:10.1515/ans-2022-0004.","bibtex":"@article{Winkler_2022, title={Chemotaxis-Stokes interaction with very weak diffusion enhancement: Blow-up exclusion via detection of absorption-induced entropy structures involving multiplicative couplings}, volume={22}, DOI={10.1515/ans-2022-0004}, number={1}, journal={Advanced Nonlinear Studies}, publisher={Walter de Gruyter GmbH}, author={Winkler, Michael}, year={2022}, pages={88–117} }","ama":"Winkler M. Chemotaxis-Stokes interaction with very weak diffusion enhancement: Blow-up exclusion via detection of absorption-induced entropy structures involving multiplicative couplings. Advanced Nonlinear Studies. 2022;22(1):88-117. doi:10.1515/ans-2022-0004","short":"M. Winkler, Advanced Nonlinear Studies 22 (2022) 88–117.","chicago":"Winkler, Michael. “Chemotaxis-Stokes Interaction with Very Weak Diffusion Enhancement: Blow-up Exclusion via Detection of Absorption-Induced Entropy Structures Involving Multiplicative Couplings.” Advanced Nonlinear Studies 22, no. 1 (2022): 88–117. https://doi.org/10.1515/ans-2022-0004.","apa":"Winkler, M. (2022). Chemotaxis-Stokes interaction with very weak diffusion enhancement: Blow-up exclusion via detection of absorption-induced entropy structures involving multiplicative couplings. Advanced Nonlinear Studies, 22(1), 88–117. https://doi.org/10.1515/ans-2022-0004"},"title":"Chemotaxis-Stokes interaction with very weak diffusion enhancement: Blow-up exclusion via detection of absorption-induced entropy structures involving multiplicative couplings","publisher":"Walter de Gruyter GmbH","publication":"Advanced Nonlinear Studies","user_id":"31496","issue":"1"}