{"status":"public","author":[{"last_name":"Winkler","full_name":"Winkler, Michael","first_name":"Michael","id":"31496"}],"doi":"10.1007/s42985-022-00186-z","publication_status":"published","abstract":[{"text":"AbstractThe Cauchy problem in $$\\mathbb {R}^n$$\r\n \r\n \r\n R\r\n \r\n n\r\n \r\n , $$n\\ge 1$$\r\n \r\n n\r\n \r\n 1\r\n \r\n , for the degenerate parabolic equation $$\\begin{aligned} u_t=u^p \\Delta u \\qquad \\qquad (\\star ) \\end{aligned}$$\r\n \r\n \r\n \r\n \r\n \r\n \r\n u\r\n t\r\n \r\n =\r\n \r\n u\r\n p\r\n \r\n Δ\r\n u\r\n \r\n \r\n \r\n (\r\n \r\n )\r\n \r\n \r\n \r\n \r\n \r\n \r\n is considered for $$p\\ge 1$$\r\n \r\n p\r\n \r\n 1\r\n \r\n . It is shown that given any positive $$f\\in C^0([0,\\infty ))$$\r\n \r\n f\r\n \r\n \r\n C\r\n 0\r\n \r\n \r\n (\r\n \r\n [\r\n 0\r\n ,\r\n \r\n )\r\n \r\n )\r\n \r\n \r\n and $$g\\in C^0([0,\\infty ))$$\r\n \r\n g\r\n \r\n \r\n C\r\n 0\r\n \r\n \r\n (\r\n \r\n [\r\n 0\r\n ,\r\n \r\n )\r\n \r\n )\r\n \r\n \r\n satisfying $$\\begin{aligned} f(t)\\rightarrow + \\infty \\quad \\text{ and } \\quad g(t)\\rightarrow 0 \\qquad \\text{ as } t\\rightarrow \\infty , \\end{aligned}$$\r\n \r\n \r\n \r\n \r\n \r\n f\r\n (\r\n t\r\n )\r\n \r\n +\r\n \r\n \r\n \r\n and\r\n \r\n \r\n g\r\n (\r\n t\r\n )\r\n \r\n 0\r\n \r\n \r\n as\r\n \r\n t\r\n \r\n \r\n ,\r\n \r\n \r\n \r\n \r\n \r\n one can find positive and radially symmetric continuous initial data with the property that the initial value problem for ($$\\star $$\r\n \r\n ) admits a positive classical solution such that $$\\begin{aligned} t^\\frac{1}{p} \\Vert u(\\cdot ,t)\\Vert _{L^\\infty (\\mathbb {R}^n)} \\rightarrow \\infty \\qquad \\text{ and } \\qquad \\Vert u(\\cdot ,t)\\Vert _{L^\\infty (\\mathbb {R}^n)} \\rightarrow 0 \\qquad \\text{ as } t\\rightarrow \\infty , \\end{aligned}$$\r\n \r\n \r\n \r\n \r\n \r\n \r\n t\r\n \r\n 1\r\n p\r\n \r\n \r\n \r\n \r\n \r\n u\r\n \r\n (\r\n ·\r\n ,\r\n t\r\n )\r\n \r\n \r\n \r\n \r\n \r\n L\r\n \r\n \r\n \r\n (\r\n \r\n \r\n R\r\n \r\n n\r\n \r\n )\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n and\r\n \r\n \r\n \r\n \r\n \r\n u\r\n \r\n (\r\n ·\r\n ,\r\n t\r\n )\r\n \r\n \r\n \r\n \r\n \r\n L\r\n \r\n \r\n \r\n (\r\n \r\n \r\n R\r\n \r\n n\r\n \r\n )\r\n \r\n \r\n \r\n \r\n 0\r\n \r\n \r\n as\r\n \r\n t\r\n \r\n \r\n ,\r\n \r\n \r\n \r\n \r\n \r\n but that $$\\begin{aligned} \\liminf _{t\\rightarrow \\infty } \\frac{t^\\frac{1}{p} \\Vert u(\\cdot ,t)\\Vert _{L^\\infty (\\mathbb {R}^n)}}{f(t)} =0 \\end{aligned}$$\r\n \r\n \r\n \r\n \r\n \r\n \r\n lim inf\r\n \r\n t\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n t\r\n \r\n 1\r\n p\r\n \r\n \r\n \r\n \r\n \r\n u\r\n \r\n (\r\n ·\r\n ,\r\n t\r\n )\r\n \r\n \r\n \r\n \r\n \r\n L\r\n \r\n \r\n \r\n (\r\n \r\n \r\n R\r\n \r\n n\r\n \r\n )\r\n \r\n \r\n \r\n \r\n \r\n f\r\n (\r\n t\r\n )\r\n \r\n \r\n =\r\n 0\r\n \r\n \r\n \r\n \r\n \r\n and $$\\begin{aligned} \\limsup _{t\\rightarrow \\infty } \\frac{\\Vert u(\\cdot ,t)\\Vert _{L^\\infty (\\mathbb {R}^n)}}{g(t)} =\\infty . \\end{aligned}$$\r\n \r\n \r\n \r\n \r\n \r\n \r\n lim sup\r\n \r\n t\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n u\r\n \r\n (\r\n ·\r\n ,\r\n t\r\n )\r\n \r\n \r\n \r\n \r\n \r\n L\r\n \r\n \r\n \r\n (\r\n \r\n \r\n R\r\n \r\n n\r\n \r\n )\r\n \r\n \r\n \r\n \r\n g\r\n (\r\n t\r\n )\r\n \r\n \r\n =\r\n \r\n .\r\n \r\n \r\n \r\n \r\n \r\n ","lang":"eng"}],"language":[{"iso":"eng"}],"intvolume":" 3","date_updated":"2025-12-18T20:05:38Z","date_created":"2025-12-18T19:30:04Z","volume":3,"publication_identifier":{"issn":["2662-2963","2662-2971"]},"type":"journal_article","title":"Oscillatory decay in a degenerate parabolic equation","citation":{"ama":"Winkler M. Oscillatory decay in a degenerate parabolic equation. Partial Differential Equations and Applications. 2022;3(4). doi:10.1007/s42985-022-00186-z","chicago":"Winkler, Michael. “Oscillatory Decay in a Degenerate Parabolic Equation.” Partial Differential Equations and Applications 3, no. 4 (2022). https://doi.org/10.1007/s42985-022-00186-z.","apa":"Winkler, M. (2022). Oscillatory decay in a degenerate parabolic equation. Partial Differential Equations and Applications, 3(4), Article 47. https://doi.org/10.1007/s42985-022-00186-z","short":"M. Winkler, Partial Differential Equations and Applications 3 (2022).","bibtex":"@article{Winkler_2022, title={Oscillatory decay in a degenerate parabolic equation}, volume={3}, DOI={10.1007/s42985-022-00186-z}, number={447}, journal={Partial Differential Equations and Applications}, publisher={Springer Science and Business Media LLC}, author={Winkler, Michael}, year={2022} }","ieee":"M. Winkler, “Oscillatory decay in a degenerate parabolic equation,” Partial Differential Equations and Applications, vol. 3, no. 4, Art. no. 47, 2022, doi: 10.1007/s42985-022-00186-z.","mla":"Winkler, Michael. “Oscillatory Decay in a Degenerate Parabolic Equation.” Partial Differential Equations and Applications, vol. 3, no. 4, 47, Springer Science and Business Media LLC, 2022, doi:10.1007/s42985-022-00186-z."},"_id":"63311","year":"2022","issue":"4","article_number":"47","user_id":"31496","publication":"Partial Differential Equations and Applications","publisher":"Springer Science and Business Media LLC"}