{"year":"2022","title":"Approaching logarithmic singularities in quasilinear chemotaxis-consumption systems with signal-dependent sensitivities","citation":{"bibtex":"@article{Winkler_2022, title={Approaching logarithmic singularities in quasilinear chemotaxis-consumption systems with signal-dependent sensitivities}, volume={27}, DOI={10.3934/dcdsb.2022009}, number={116565}, journal={Discrete and Continuous Dynamical Systems - B}, publisher={American Institute of Mathematical Sciences (AIMS)}, author={Winkler, Michael}, year={2022} }","ieee":"M. Winkler, “Approaching logarithmic singularities in quasilinear chemotaxis-consumption systems with signal-dependent sensitivities,” Discrete and Continuous Dynamical Systems - B, vol. 27, no. 11, Art. no. 6565, 2022, doi: 10.3934/dcdsb.2022009.","mla":"Winkler, Michael. “Approaching Logarithmic Singularities in Quasilinear Chemotaxis-Consumption Systems with Signal-Dependent Sensitivities.” Discrete and Continuous Dynamical Systems - B, vol. 27, no. 11, 6565, American Institute of Mathematical Sciences (AIMS), 2022, doi:10.3934/dcdsb.2022009.","chicago":"Winkler, Michael. “Approaching Logarithmic Singularities in Quasilinear Chemotaxis-Consumption Systems with Signal-Dependent Sensitivities.” Discrete and Continuous Dynamical Systems - B 27, no. 11 (2022). https://doi.org/10.3934/dcdsb.2022009.","apa":"Winkler, M. (2022). Approaching logarithmic singularities in quasilinear chemotaxis-consumption systems with signal-dependent sensitivities. Discrete and Continuous Dynamical Systems - B, 27(11), Article 6565. https://doi.org/10.3934/dcdsb.2022009","short":"M. Winkler, Discrete and Continuous Dynamical Systems - B 27 (2022).","ama":"Winkler M. Approaching logarithmic singularities in quasilinear chemotaxis-consumption systems with signal-dependent sensitivities. Discrete and Continuous Dynamical Systems - B. 2022;27(11). doi:10.3934/dcdsb.2022009"},"_id":"63312","user_id":"31496","publisher":"American Institute of Mathematical Sciences (AIMS)","publication":"Discrete and Continuous Dynamical Systems - B","issue":"11","article_number":"6565","doi":"10.3934/dcdsb.2022009","publication_status":"published","language":[{"iso":"eng"}],"abstract":[{"text":"<p style='text-indent:20px;'>The chemotaxis system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{array}{l}\\left\\{ \\begin{array}{l} \tu_t = \\nabla \\cdot \\big( D(u) \\nabla u \\big) - \\nabla \\cdot \\big( uS(x, u, v)\\cdot \\nabla v\\big), \\\\ \tv_t = \\Delta v -uv, \\end{array} \\right. \\end{array} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>is considered in a bounded domain <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\Omega\\subset \\mathbb{R}^n $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M2\">\\begin{document}$ n\\ge 2 $\\end{document}</tex-math></inline-formula>, with smooth boundary.</p><p style='text-indent:20px;'>It is shown that if <inline-formula><tex-math id=\"M3\">\\begin{document}$ D: [0, \\infty) \\to [0, \\infty) $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M4\">\\begin{document}$ S: \\overline{\\Omega}\\times [0, \\infty)\\times (0, \\infty)\\to \\mathbb{R}^{n\\times n} $\\end{document}</tex-math></inline-formula> are suitably smooth functions satisfying</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE2\"> \\begin{document}$ \\begin{array}{l}D(u) \\ge k_D u^{m-1} \t\\qquad {\\rm{for\\; all}}\\; u\\ge 0 \\end{array} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>and</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE3\"> \\begin{document}$ \\begin{array}{l}|S(x, u, v)| \\le \\frac{S_0(v)}{v^\\alpha} \\qquad {\\rm{for\\; all}}\\; (x, u, v)\\; \\in \\Omega\\times (0, \\infty)^2 \\end{array} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with some</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE4\"> \\begin{document}$ \\begin{array}{l}m&gt;\\frac{3n-2}{2n} \t\\qquad {\\rm{and}}\\;\\alpha\\in [0, 1), \\end{array} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>and with some <inline-formula><tex-math id=\"M5\">\\begin{document}$ k_D&gt;0 $\\end{document}</tex-math></inline-formula> and nondecreasing <inline-formula><tex-math id=\"M6\">\\begin{document}$ S_0: (0, \\infty)\\to (0, \\infty) $\\end{document}</tex-math></inline-formula>, then for all suitably regular initial data a corresponding no-flux type initial-boundary value problem admits a global bounded weak solution which actually is smooth and classical if <inline-formula><tex-math id=\"M7\">\\begin{document}$ D(0)&gt;0 $\\end{document}</tex-math></inline-formula>.</p>","lang":"eng"}],"author":[{"full_name":"Winkler, Michael","last_name":"Winkler","first_name":"Michael","id":"31496"}],"status":"public","publication_identifier":{"issn":["1531-3492","1553-524X"]},"type":"journal_article","volume":27,"date_created":"2025-12-18T19:30:32Z","intvolume":" 27","date_updated":"2025-12-18T20:05:47Z"}