{"author":[{"last_name":"Winkler","full_name":"Winkler, Michael","first_name":"Michael","id":"31496"}],"status":"public","doi":"10.1007/s00208-018-1722-8","publication_status":"published","language":[{"iso":"eng"}],"date_updated":"2025-12-19T10:58:06Z","intvolume":" 373","date_created":"2025-12-19T10:57:59Z","publication_identifier":{"issn":["0025-5831","1432-1807"]},"type":"journal_article","volume":373,"_id":"63361","citation":{"short":"M. Winkler, Mathematische Annalen 373 (2018) 1237–1282.","apa":"Winkler, M. (2018). How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases. Mathematische Annalen, 373(3–4), 1237–1282. https://doi.org/10.1007/s00208-018-1722-8","chicago":"Winkler, Michael. “How Unstable Is Spatial Homogeneity in Keller-Segel Systems? A New Critical Mass Phenomenon in Two- and Higher-Dimensional Parabolic-Elliptic Cases.” Mathematische Annalen 373, no. 3–4 (2018): 1237–82. https://doi.org/10.1007/s00208-018-1722-8.","ama":"Winkler M. How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases. Mathematische Annalen. 2018;373(3-4):1237-1282. doi:10.1007/s00208-018-1722-8","ieee":"M. Winkler, “How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases,” Mathematische Annalen, vol. 373, no. 3–4, pp. 1237–1282, 2018, doi: 10.1007/s00208-018-1722-8.","mla":"Winkler, Michael. “How Unstable Is Spatial Homogeneity in Keller-Segel Systems? A New Critical Mass Phenomenon in Two- and Higher-Dimensional Parabolic-Elliptic Cases.” Mathematische Annalen, vol. 373, no. 3–4, Springer Science and Business Media LLC, 2018, pp. 1237–82, doi:10.1007/s00208-018-1722-8.","bibtex":"@article{Winkler_2018, title={How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases}, volume={373}, DOI={10.1007/s00208-018-1722-8}, number={3–4}, journal={Mathematische Annalen}, publisher={Springer Science and Business Media LLC}, author={Winkler, Michael}, year={2018}, pages={1237–1282} }"},"title":"How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases","page":"1237-1282","year":"2018","issue":"3-4","publisher":"Springer Science and Business Media LLC","publication":"Mathematische Annalen","user_id":"31496"}