{"publisher":"American Mathematical Society (AMS)","publication":"Transactions of the American Mathematical Society, Series B","user_id":"31496","issue":"2","page":"31-67","year":"2017","_id":"63383","citation":{"bibtex":"@article{Bellomo_Winkler_2017, title={Finite-time blow-up in a degenerate chemotaxis system with flux limitation}, volume={4}, DOI={10.1090/btran/17}, number={2}, journal={Transactions of the American Mathematical Society, Series B}, publisher={American Mathematical Society (AMS)}, author={Bellomo, Nicola and Winkler, Michael}, year={2017}, pages={31–67} }","mla":"Bellomo, Nicola, and Michael Winkler. “Finite-Time Blow-up in a Degenerate Chemotaxis System with Flux Limitation.” Transactions of the American Mathematical Society, Series B, vol. 4, no. 2, American Mathematical Society (AMS), 2017, pp. 31–67, doi:10.1090/btran/17.","ieee":"N. Bellomo and M. Winkler, “Finite-time blow-up in a degenerate chemotaxis system with flux limitation,” Transactions of the American Mathematical Society, Series B, vol. 4, no. 2, pp. 31–67, 2017, doi: 10.1090/btran/17.","apa":"Bellomo, N., & Winkler, M. (2017). Finite-time blow-up in a degenerate chemotaxis system with flux limitation. Transactions of the American Mathematical Society, Series B, 4(2), 31–67. https://doi.org/10.1090/btran/17","chicago":"Bellomo, Nicola, and Michael Winkler. “Finite-Time Blow-up in a Degenerate Chemotaxis System with Flux Limitation.” Transactions of the American Mathematical Society, Series B 4, no. 2 (2017): 31–67. https://doi.org/10.1090/btran/17.","short":"N. Bellomo, M. Winkler, Transactions of the American Mathematical Society, Series B 4 (2017) 31–67.","ama":"Bellomo N, Winkler M. Finite-time blow-up in a degenerate chemotaxis system with flux limitation. Transactions of the American Mathematical Society, Series B. 2017;4(2):31-67. doi:10.1090/btran/17"},"title":"Finite-time blow-up in a degenerate chemotaxis system with flux limitation","publication_identifier":{"issn":["2330-0000"]},"volume":4,"type":"journal_article","intvolume":" 4","date_updated":"2025-12-19T11:10:17Z","date_created":"2025-12-19T11:09:53Z","publication_status":"published","doi":"10.1090/btran/17","language":[{"iso":"eng"}],"abstract":[{"text":"

This paper is concerned with radially symmetric solutions of the parabolic-elliptic version of the Keller-Segel system with flux limitation, as given by \r\n\r\n \r\n \r\n \r\n \r\n (\\star)\r\n \r\n \r\n \r\n {\r\n \r\n \r\n \r\n \r\n u\r\n t\r\n \r\n =\r\n \r\n \r\n \r\n \r\n (\r\n \r\n \r\n \r\n \r\n u\r\n \r\n u\r\n \r\n \r\n \r\n u\r\n 2\r\n \r\n +\r\n \r\n |\r\n \r\n \r\n u\r\n \r\n \r\n |\r\n \r\n 2\r\n \r\n \r\n \r\n \r\n \r\n )\r\n \r\n \r\n \r\n χ\r\n \r\n \r\n \r\n \r\n \r\n (\r\n \r\n \r\n \r\n \r\n u\r\n \r\n v\r\n \r\n \r\n 1\r\n +\r\n \r\n |\r\n \r\n \r\n v\r\n \r\n \r\n |\r\n \r\n 2\r\n \r\n \r\n \r\n \r\n \r\n )\r\n \r\n \r\n ,\r\n \r\n \r\n \r\n \r\n 0\r\n =\r\n Δ\r\n v\r\n \r\n μ\r\n +\r\n u\r\n ,\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \\begin{equation}\\tag {\\star } \\begin {cases} u_t=\\nabla \\cdot \\Big (\\frac {u\\nabla u}{\\sqrt {u^2+|\\nabla u|^2}}\\Big ) - \\chi \\, \\nabla \\cdot \\Big (\\frac {u\\nabla v}{\\sqrt {1+|\\nabla v|^2}}\\Big ), \\\\[3pt] 0=\\Delta v - \\mu + u, \\end{cases} \\end{equation}\r\n \r\n\r\n\r\n under the initial condition \r\n\r\n \r\n \r\n u\r\n \r\n \r\n |\r\n \r\n \r\n t\r\n =\r\n 0\r\n \r\n \r\n =\r\n \r\n u\r\n 0\r\n \r\n >\r\n 0\r\n \r\n u|_{t=0}=u_0>0\r\n \r\n\r\n and no-flux boundary conditions in a ball \r\n\r\n \r\n \r\n Ω\r\n \r\n \r\n \r\n R\r\n \r\n n\r\n \r\n \r\n \\Omega \\subset \\mathbb {R}^n\r\n \r\n\r\n, where \r\n\r\n \r\n \r\n χ\r\n >\r\n 0\r\n \r\n \\chi >0\r\n \r\n\r\n and \r\n\r\n \r\n \r\n μ\r\n :=\r\n \r\n 1\r\n \r\n \r\n |\r\n \r\n Ω\r\n \r\n |\r\n \r\n \r\n \r\n \r\n \r\n Ω\r\n \r\n \r\n u\r\n 0\r\n \r\n \r\n \\mu :=\\frac {1}{|\\Omega |} \\int _\\Omega u_0\r\n \r\n\r\n. A previous result of the authors [Comm. Partial Differential Equations 42 (2017), 436–473] has asserted global existence of bounded classical solutions for arbitrary positive radial initial data \r\n\r\n \r\n \r\n \r\n u\r\n 0\r\n \r\n \r\n \r\n C\r\n 3\r\n \r\n (\r\n \r\n \r\n Ω\r\n ¯\r\n \r\n \r\n )\r\n \r\n u_0\\in C^3(\\bar \\Omega )\r\n \r\n\r\n when either \r\n\r\n \r\n \r\n n\r\n \r\n 2\r\n \r\n n\\ge 2\r\n \r\n\r\n and \r\n\r\n \r\n \r\n χ\r\n >\r\n 1\r\n \r\n \\chi >1\r\n \r\n\r\n, or \r\n\r\n \r\n \r\n n\r\n =\r\n 1\r\n \r\n n=1\r\n \r\n\r\n and \r\n\r\n \r\n \r\n \r\n \r\n Ω\r\n \r\n \r\n u\r\n 0\r\n \r\n >\r\n \r\n 1\r\n \r\n (\r\n \r\n χ\r\n 2\r\n \r\n \r\n 1\r\n \r\n )\r\n +\r\n \r\n \r\n \r\n \r\n \\int _\\Omega u_0>\\frac {1}{\\sqrt {(\\chi ^2-1)_+}}\r\n \r\n\r\n.

\r\n\r\n

This present paper shows that these conditions are essentially optimal: Indeed, it is shown that if the taxis coefficient satisfies \r\n\r\n \r\n \r\n χ\r\n >\r\n 1\r\n \r\n \\chi >1\r\n \r\n\r\n, then for any choice of \r\n\\[\r\n\r\n \r\n \r\n {\r\n \r\n \r\n \r\n m\r\n >\r\n \r\n 1\r\n \r\n \r\n χ\r\n 2\r\n \r\n \r\n 1\r\n \r\n \r\n \r\n \r\n a\r\n m\r\n p\r\n ;\r\n \r\n if \r\n \r\n n\r\n =\r\n 1\r\n \r\n \r\n ,\r\n \r\n \r\n \r\n \r\n \r\n \r\n m\r\n >\r\n 0\r\n \r\n  is arbitrary\r\n \r\n \r\n \r\n a\r\n m\r\n p\r\n ;\r\n \r\n if \r\n \r\n n\r\n \r\n 2\r\n \r\n \r\n ,\r\n \r\n \r\n \r\n \r\n \r\n \\begin {cases} m>\\frac {1}{\\sqrt {\\chi ^2-1}} & \\text {if $n=1$}, \\\\ \\text {$m>0$ is arbitrary} & \\text {if $n\\ge 2$}, \\end {cases}\r\n \r\n\r\n\\]\r\n there exist positive initial data \r\n\r\n \r\n \r\n \r\n u\r\n 0\r\n \r\n \r\n \r\n C\r\n 3\r\n \r\n (\r\n \r\n \r\n Ω\r\n ¯\r\n \r\n \r\n )\r\n \r\n u_0\\in C^3(\\bar \\Omega )\r\n \r\n\r\n satisfying \r\n\r\n \r\n \r\n \r\n \r\n Ω\r\n \r\n \r\n u\r\n 0\r\n \r\n =\r\n m\r\n \r\n \\int _\\Omega u_0=m\r\n \r\n\r\n which are such that for some \r\n\r\n \r\n \r\n T\r\n >\r\n 0\r\n \r\n T>0\r\n \r\n\r\n, (\r\n\r\n \r\n \r\n \\star\r\n \r\n\r\n) possesses a uniquely determined classical solution \r\n\r\n \r\n \r\n (\r\n u\r\n ,\r\n v\r\n )\r\n \r\n (u,v)\r\n \r\n\r\n in \r\n\r\n \r\n \r\n Ω\r\n ×\r\n (\r\n 0\r\n ,\r\n T\r\n )\r\n \r\n \\Omega \\times (0,T)\r\n \r\n\r\n blowing up at time \r\n\r\n \r\n T\r\n T\r\n \r\n\r\n in the sense that \r\n\r\n \r\n \r\n \r\n lim sup\r\n \r\n t\r\n \r\n T\r\n \r\n \r\n \r\n u\r\n (\r\n \r\n ,\r\n t\r\n )\r\n \r\n \r\n \r\n \r\n L\r\n \r\n \r\n (\r\n Ω\r\n )\r\n \r\n \r\n =\r\n \r\n \r\n \\limsup _{t\\nearrow T} \\|u(\\cdot ,t)\\|_{L^\\infty (\\Omega )}=\\infty\r\n \r\n\r\n.

\r\n\r\n

This result is derived by means of a comparison argument applied to the doubly degenerate scalar parabolic equation satisfied by the mass accumulation function associated with (\r\n\r\n \r\n \r\n \\star\r\n \r\n\r\n).

","lang":"eng"}],"author":[{"first_name":"Nicola","full_name":"Bellomo, Nicola","last_name":"Bellomo"},{"full_name":"Winkler, Michael","last_name":"Winkler","id":"31496","first_name":"Michael"}],"status":"public"}