{"_id":"63498","intvolume":" 40","doi":"10.1109/TPEL.2024.3488174","status":"public","date_created":"2026-01-06T08:07:13Z","user_id":"83383","department":[{"_id":"52"}],"publication":"IEEE Transactions on Power Electronics","year":"2025","page":"3326-3335","type":"journal_article","date_updated":"2026-01-06T08:08:01Z","keyword":["Mathematical models","Estimation","Data models","Convolutional neural networks","Accuracy","Magnetic hysteresis","Magnetic cores","Temperature measurement","Magnetic domains","Temperature distribution","Convolutional neural network (CNN)","machine learning (ML)","magnetics"],"issue":"2","volume":40,"author":[{"last_name":"Kirchgässner","first_name":"Wilhelm","full_name":"Kirchgässner, Wilhelm"},{"first_name":"Nikolas","last_name":"Förster","full_name":"Förster, Nikolas"},{"last_name":"Piepenbrock","first_name":"Till","full_name":"Piepenbrock, Till"},{"last_name":"Schweins","first_name":"Oliver","full_name":"Schweins, Oliver"},{"first_name":"Oliver","last_name":"Wallscheid","full_name":"Wallscheid, Oliver"}],"citation":{"apa":"Kirchgässner, W., Förster, N., Piepenbrock, T., Schweins, O., & Wallscheid, O. (2025). HARDCORE: H-Field and Power Loss Estimation for Arbitrary Waveforms With Residual, Dilated Convolutional Neural Networks in Ferrite Cores. IEEE Transactions on Power Electronics, 40(2), 3326–3335. https://doi.org/10.1109/TPEL.2024.3488174","ama":"Kirchgässner W, Förster N, Piepenbrock T, Schweins O, Wallscheid O. HARDCORE: H-Field and Power Loss Estimation for Arbitrary Waveforms With Residual, Dilated Convolutional Neural Networks in Ferrite Cores. IEEE Transactions on Power Electronics. 2025;40(2):3326-3335. doi:10.1109/TPEL.2024.3488174","ieee":"W. Kirchgässner, N. Förster, T. Piepenbrock, O. Schweins, and O. Wallscheid, “HARDCORE: H-Field and Power Loss Estimation for Arbitrary Waveforms With Residual, Dilated Convolutional Neural Networks in Ferrite Cores,” IEEE Transactions on Power Electronics, vol. 40, no. 2, pp. 3326–3335, 2025, doi: 10.1109/TPEL.2024.3488174.","mla":"Kirchgässner, Wilhelm, et al. “HARDCORE: H-Field and Power Loss Estimation for Arbitrary Waveforms With Residual, Dilated Convolutional Neural Networks in Ferrite Cores.” IEEE Transactions on Power Electronics, vol. 40, no. 2, 2025, pp. 3326–35, doi:10.1109/TPEL.2024.3488174.","bibtex":"@article{Kirchgässner_Förster_Piepenbrock_Schweins_Wallscheid_2025, title={HARDCORE: H-Field and Power Loss Estimation for Arbitrary Waveforms With Residual, Dilated Convolutional Neural Networks in Ferrite Cores}, volume={40}, DOI={10.1109/TPEL.2024.3488174}, number={2}, journal={IEEE Transactions on Power Electronics}, author={Kirchgässner, Wilhelm and Förster, Nikolas and Piepenbrock, Till and Schweins, Oliver and Wallscheid, Oliver}, year={2025}, pages={3326–3335} }","chicago":"Kirchgässner, Wilhelm, Nikolas Förster, Till Piepenbrock, Oliver Schweins, and Oliver Wallscheid. “HARDCORE: H-Field and Power Loss Estimation for Arbitrary Waveforms With Residual, Dilated Convolutional Neural Networks in Ferrite Cores.” IEEE Transactions on Power Electronics 40, no. 2 (2025): 3326–35. https://doi.org/10.1109/TPEL.2024.3488174.","short":"W. Kirchgässner, N. Förster, T. Piepenbrock, O. Schweins, O. Wallscheid, IEEE Transactions on Power Electronics 40 (2025) 3326–3335."},"title":"HARDCORE: H-Field and Power Loss Estimation for Arbitrary Waveforms With Residual, Dilated Convolutional Neural Networks in Ferrite Cores"}