{"title":"On the little Weyl group of a real spherical space","doi":"10.1007/s00208-022-02473-x","date_updated":"2026-02-19T13:25:52Z","publisher":"Springer Science and Business Media LLC","volume":387,"author":[{"first_name":"Job J.","full_name":"Kuit, Job J.","last_name":"Kuit"},{"first_name":"Eitan","last_name":"Sayag","full_name":"Sayag, Eitan"}],"date_created":"2026-02-19T13:24:21Z","year":"2022","page":"433-498","intvolume":" 387","citation":{"apa":"Kuit, J. J., & Sayag, E. (2022). On the little Weyl group of a real spherical space. Mathematische Annalen, 387(1–2), 433–498. https://doi.org/10.1007/s00208-022-02473-x","short":"J.J. Kuit, E. Sayag, Mathematische Annalen 387 (2022) 433–498.","bibtex":"@article{Kuit_Sayag_2022, title={On the little Weyl group of a real spherical space}, volume={387}, DOI={10.1007/s00208-022-02473-x}, number={1–2}, journal={Mathematische Annalen}, publisher={Springer Science and Business Media LLC}, author={Kuit, Job J. and Sayag, Eitan}, year={2022}, pages={433–498} }","mla":"Kuit, Job J., and Eitan Sayag. “On the Little Weyl Group of a Real Spherical Space.” Mathematische Annalen, vol. 387, no. 1–2, Springer Science and Business Media LLC, 2022, pp. 433–98, doi:10.1007/s00208-022-02473-x.","ieee":"J. J. Kuit and E. Sayag, “On the little Weyl group of a real spherical space,” Mathematische Annalen, vol. 387, no. 1–2, pp. 433–498, 2022, doi: 10.1007/s00208-022-02473-x.","chicago":"Kuit, Job J., and Eitan Sayag. “On the Little Weyl Group of a Real Spherical Space.” Mathematische Annalen 387, no. 1–2 (2022): 433–98. https://doi.org/10.1007/s00208-022-02473-x.","ama":"Kuit JJ, Sayag E. On the little Weyl group of a real spherical space. Mathematische Annalen. 2022;387(1-2):433-498. doi:10.1007/s00208-022-02473-x"},"publication_identifier":{"issn":["0025-5831","1432-1807"]},"publication_status":"published","issue":"1-2","language":[{"iso":"eng"}],"_id":"64272","user_id":"52730","abstract":[{"lang":"eng","text":"AbstractIn the present paper we further the study of the compression cone of a real spherical homogeneous space $$Z=G/H$$\r\n \r\n Z\r\n =\r\n G\r\n /\r\n H\r\n \r\n . In particular we provide a geometric construction of the little Weyl group of Z introduced recently by Knop and Krötz. Our technique is based on a fine analysis of limits of conjugates of the subalgebra $$\\mathrm{Lie}(H)$$\r\n \r\n Lie\r\n (\r\n H\r\n )\r\n \r\n along one-parameter subgroups in the Grassmannian of subspaces of $$\\mathrm{Lie}(G)$$\r\n \r\n Lie\r\n (\r\n G\r\n )\r\n \r\n . The little Weyl group is obtained as a finite reflection group generated by the reflections in the walls of the compression cone."}],"status":"public","publication":"Mathematische Annalen","type":"journal_article"}