{"title":"Solvability of invariant systems of differential equations on H2$\\mathbb {H}^2$ and beyond","doi":"10.1002/mana.70100","publisher":"Wiley","date_updated":"2026-02-20T20:01:56Z","volume":299,"author":[{"first_name":"Martin","full_name":"Olbrich, Martin","last_name":"Olbrich"},{"first_name":"Guendalina","last_name":"Palmirotta","id":"109467","full_name":"Palmirotta, Guendalina"}],"date_created":"2026-02-20T19:56:33Z","year":"2026","intvolume":" 299","page":"456-479","citation":{"mla":"Olbrich, Martin, and Guendalina Palmirotta. “Solvability of Invariant Systems of Differential Equations on H2$\\mathbb {H}^2$ and Beyond.” Mathematische Nachrichten, vol. 299, no. 2, Wiley, 2026, pp. 456–79, doi:10.1002/mana.70100.","bibtex":"@article{Olbrich_Palmirotta_2026, title={Solvability of invariant systems of differential equations on H2$\\mathbb {H}^2$ and beyond}, volume={299}, DOI={10.1002/mana.70100}, number={2}, journal={Mathematische Nachrichten}, publisher={Wiley}, author={Olbrich, Martin and Palmirotta, Guendalina}, year={2026}, pages={456–479} }","short":"M. Olbrich, G. Palmirotta, Mathematische Nachrichten 299 (2026) 456–479.","apa":"Olbrich, M., & Palmirotta, G. (2026). Solvability of invariant systems of differential equations on H2$\\mathbb {H}^2$ and beyond. Mathematische Nachrichten, 299(2), 456–479. https://doi.org/10.1002/mana.70100","chicago":"Olbrich, Martin, and Guendalina Palmirotta. “Solvability of Invariant Systems of Differential Equations on H2$\\mathbb {H}^2$ and Beyond.” Mathematische Nachrichten 299, no. 2 (2026): 456–79. https://doi.org/10.1002/mana.70100.","ieee":"M. Olbrich and G. Palmirotta, “Solvability of invariant systems of differential equations on H2$\\mathbb {H}^2$ and beyond,” Mathematische Nachrichten, vol. 299, no. 2, pp. 456–479, 2026, doi: 10.1002/mana.70100.","ama":"Olbrich M, Palmirotta G. Solvability of invariant systems of differential equations on H2$\\mathbb {H}^2$ and beyond. Mathematische Nachrichten. 2026;299(2):456-479. doi:10.1002/mana.70100"},"publication_identifier":{"issn":["0025-584X","1522-2616"]},"publication_status":"published","issue":"2","language":[{"iso":"eng"}],"_id":"64569","department":[{"_id":"548"}],"user_id":"109467","abstract":[{"lang":"eng","text":"Abstract\r\n We show how the Fourier transform for distributional sections of vector bundles over symmetric spaces of non‐compact type can be used for questions of solvability of systems of invariant differential equations in analogy to Hörmander's proof of the Ehrenpreis–Malgrange theorem. We get complete solvability for the hyperbolic plane and partial results for products and the hyperbolic 3‐space ."}],"status":"public","publication":"Mathematische Nachrichten","type":"journal_article"}