Multiobjective Model Predictive Control of an Industrial Laundry
Peitz, Sebastian
Gräler, Manuel
Henke, Christian
Molo, Mirko Hessel-von
Dellnitz, Michael
Trächtler, Ansgar
In a wide range of applications, it is desirable to optimally control a system with respect to concurrent, potentially competing goals. This gives rise to a multiobjective optimal control problem where, instead of computing a single optimal solution, the set of optimal compromises, the so-called Pareto set, has to be approximated. When it is not possible to compute the entire control trajectory in advance, for instance due to uncertainties or unforeseeable events, model predictive control methods can be applied to control the system during operation in real time. In this article, we present an algorithm for the solution of multiobjective model predictive control problems. In an offline scenario, it can be used to compute the entire set of optimal compromises whereas in a real time scenario, one optimal compromise is computed according to an operator's preference. The results are illustrated using the example of an industrial laundry. A logistics model of the laundry is developed and then utilized in the optimization routine. Results are presented for an offline as well as an online scenario.
2016
info:eu-repo/semantics/conferenceObject
doc-type:conferenceObject
text
http://purl.org/coar/resource_type/c_5794
https://ris.uni-paderborn.de/record/8759
Peitz S, Gräler M, Henke C, Molo MH, Dellnitz M, Trächtler A. Multiobjective Model Predictive Control of an Industrial Laundry. In: <i>Procedia Technology</i>. ; 2016:483-490. doi:<a href="https://doi.org/10.1016/j.protcy.2016.08.061">10.1016/j.protcy.2016.08.061</a>
eng
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.protcy.2016.08.061
info:eu-repo/semantics/altIdentifier/issn/2212-0173
info:eu-repo/semantics/closedAccess