Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
204 Publications
2020 | Conference Paper | LibreCat-ID: 48895
V. Roostapour, J. Bossek, and F. Neumann, “Runtime Analysis of Evolutionary Algorithms with Biased Mutation for the Multi-Objective Minimum Spanning Tree Problem,” in Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 2020, pp. 551–559, doi: 10.1145/3377930.3390168.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 48897
M. Seiler, J. Pohl, J. Bossek, P. Kerschke, and H. Trautmann, “Deep Learning as a Competitive Feature-Free Approach for Automated Algorithm Selection on the Traveling Salesperson Problem,” in Parallel Problem Solving from {Nature} (PPSN XVI), 2020, pp. 48–64, doi: 10.1007/978-3-030-58112-1_4.
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 48848
J. Bossek, P. Kerschke, and H. Trautmann, “A Multi-Objective Perspective on Performance Assessment and Automated Selection of Single-Objective Optimization Algorithms,” Applied Soft Computing, vol. 88, no. C, 2020, doi: 10.1016/j.asoc.2019.105901.
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 48836
T. Bartz-Beielstein et al., “Benchmarking in Optimization: Best Practice and Open Issues,” Corr, 2020.
LibreCat
2020 | Conference Paper | LibreCat-ID: 46331
M. Seiler, H. Trautmann, and P. Kerschke, “Enhancing Resilience of Deep Learning Networks By Means of Transferable Adversaries,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–8, doi: 10.1109/IJCNN48605.2020.9207338.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 46330
M. Seiler, J. Pohl, J. Bossek, P. Kerschke, and H. Trautmann, “Deep Learning as a Competitive Feature-Free Approach for Automated Algorithm Selection on the Traveling Salesperson Problem,” in Proceedings of the 16$^th$ International Conference on Parallel Problem Solving from Nature (PPSN XVI), 2020, pp. 48–64, doi: 10.1007/978-3-030-58112-1_4.
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 46334
J. Bossek, P. Kerschke, and H. Trautmann, “A multi-objective perspective on performance assessment and automated selection of single-objective optimization algorithms,” Applied Soft Computing, vol. 88, p. 105901, 2020, doi: https://doi.org/10.1016/j.asoc.2019.105901.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 46322
J. Bossek, C. Grimme, G. Rudolph, and H. Trautmann, “Towards Decision Support in Dynamic Bi-Objective Vehicle Routing,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC), 2020, pp. 1–8, doi: 10.1109/CEC48606.2020.9185778.
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 46324
J. Bossek, P. Kerschke, and H. Trautmann, “Anytime Behavior of Inexact TSP Solvers and Perspectives for Automated Algorithm Selection,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC), 2020, pp. 1–8.
LibreCat
2020 | Conference Paper | LibreCat-ID: 46323
J. Bossek, C. Grimme, and H. Trautmann, “Dynamic Bi-Objective Routing of Multiple Vehicles,” in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’20), 2020, pp. 166–174.
LibreCat
2019 | Conference Paper | LibreCat-ID: 46343
C. Grimme, P. Kerschke, and H. Trautmann, “Multimodality in Multi-Objective Optimization — More Boon than Bane?,” in Proceedings of the 10$^th$ International Conference on Evolutionary Multi-Criterion Optimization (EMO), 2019, vol. 11411, pp. 126–138, doi: 10.1007/978-3-030-12598-1_11.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 46345
P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated Algorithm Selection: Survey and Perspectives,” Evolutionary Computation (ECJ), vol. 27, no. 1, pp. 3–45, 2019, doi: 10.1162/evco_a_00242.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 46344
M. Carnein and H. Trautmann, “Optimizing Data Stream Representation: An Extensive Survey on Stream Clustering Algorithms,” Business and Information Systems Engineering (BISE), vol. 61, no. 3, pp. 277–297, 2019.
LibreCat
2019 | Conference Paper | LibreCat-ID: 46340
M. Carnein, L. Homann, H. Trautmann, and G. Vossen, “A Recommender System Based on Omni-Channel Customer Data,” in Proceedings of the 21$^st$ IEEE Conference on Business Informatics (CBI’ 19), 2019, pp. 65–74.
LibreCat
2019 | Conference Paper | LibreCat-ID: 46341
M. Carnein and H. Trautmann, “Customer Segmentation Based on Transactional Data Using Stream Clustering,” in Proceedings of the 23$^rd$ Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD ’19), 2019, pp. 280–292.
LibreCat
2019 | Conference Paper | LibreCat-ID: 46342
C. Grimme, P. Kerschke, M. T. M. Emmerich, M. Preuss, A. H. Deutz, and H. Trautmann, “Sliding to the Global Optimum: How to Benefit from Non-Global Optima in Multimodal Multi-Objective Optimization,” in AIP Conference Proceedings, 2019, pp. 020052-1-020052–4, doi: 10.1063/1.5090019.
LibreCat
| DOI
2019 | Book Chapter | LibreCat-ID: 46336
P. Kerschke and H. Trautmann, “Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-package flacco,” in Applications in Statistical Computing, N. Bauer, K. Ickstadt, K. Lübke, G. Szepannek, H. Trautmann, and M. Vichi, Eds. Springer, 2019, pp. 93–123.
LibreCat
| DOI
2019 | Book | LibreCat-ID: 46335
H. Trautmann, Applications in Statistical Computing — From Music Data Analysis to Industrial Quality Improvement. Springer International Publishing, 2019.
LibreCat
2019 | Journal Article | LibreCat-ID: 46346
P. Kerschke and H. Trautmann, “Automated Algorithm Selection on Continuous Black-Box Problems By Combining Exploratory Landscape Analysis and Machine Learning,” Evolutionary Computation (ECJ), vol. 27, no. 1, pp. 99–127, 2019, doi: 10.1162/evco_a_00236.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 46347
P. Kerschke et al., “Search Dynamics on Multimodal Multi-Objective Problems,” Evolutionary Computation (ECJ), vol. 27, no. 4, pp. 577–609, 2019, doi: 10.1162/evco_a_00234.
LibreCat
| DOI