Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
142 Publications
2020 | Journal Article | LibreCat-ID: 63328
Winkler, M. (2020). Boundedness in a three-dimensional Keller–Segel–Stokes system with subcritical sensitivity. Applied Mathematics Letters, 112, Article 106785. https://doi.org/10.1016/j.aml.2020.106785
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 63320
Tao, Y., & Winkler, M. (2020). Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 41(1), 439–454. https://doi.org/10.3934/dcds.2020216
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 63335
Winkler, M. (2020). Small-Mass Solutions in the Two-Dimensional Keller--Segel System Coupled to the Navier--Stokes Equations. SIAM Journal on Mathematical Analysis, 52(2), 2041–2080. https://doi.org/10.1137/19m1264199
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 63318
TAO, Y., & Winkler, M. (2020). A critical virus production rate for efficiency of oncolytic virotherapy. European Journal of Applied Mathematics, 32(2), 301–316. https://doi.org/10.1017/s0956792520000133
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 63314
SURULESCU, C., & Winkler, M. (2020). Does indirectness of signal production reduce the explosion-supporting potential in chemotaxis–haptotaxis systems? Global classical solvability in a class of models for cancer invasion (and more). European Journal of Applied Mathematics, 32(4), 618–651. https://doi.org/10.1017/s0956792520000236
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 63265
Winkler, M. (2020). Approaching Critical Decay in a Strongly Degenerate Parabolic Equation. Journal of Dynamics and Differential Equations, 36(S1), 3–23. https://doi.org/10.1007/s10884-020-09892-x
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63325
Winkler, M. (2019). Can Rotational Fluxes Impede the Tendency Toward Spatial Homogeneity in Nutrient Taxis(-Stokes) Systems? International Mathematics Research Notices, 2021(11), 8106–8152. https://doi.org/10.1093/imrn/rnz056
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63337
Winkler, M. (2019). The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in L1. Advances in Nonlinear Analysis, 9(1), 526–566. https://doi.org/10.1515/anona-2020-0013
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63334
Tao, Y., & Winkler, M. (2019). Global classical solutions to a doubly haptotactic cross-diffusion system modeling oncolytic virotherapy. Journal of Differential Equations, 268(9), 4973–4997. https://doi.org/10.1016/j.jde.2019.10.046
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63349
Bellomo, N., Painter, K. J., Tao, Y., & Winkler, M. (2019). Occurrence vs. Absence of Taxis-Driven Instabilities in a May--Nowak Model for Virus Infection. SIAM Journal on Applied Mathematics, 79(5), 1990–2010. https://doi.org/10.1137/19m1250261
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63355
Tao, Y., & Winkler, M. (2019). Boundedness and stabilization in a population model with cross‐diffusion for one species. Proceedings of the London Mathematical Society, 119(6), 1598–1632. https://doi.org/10.1112/plms.12276
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63356
Tao, Y., & Winkler, M. (2019). Large time behavior in a forager–exploiter model with different taxis strategies for two groups in search of food. Mathematical Models and Methods in Applied Sciences, 29(11), 2151–2182. https://doi.org/10.1142/s021820251950043x
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63352
Lankeit, J., & Winkler, M. (2019). Counterintuitive dependence of temporal asymptotics on initial decay in a nonlocal degenerate parabolic equation arising in game theory. Israel Journal of Mathematics, 233(1), 249–296. https://doi.org/10.1007/s11856-019-1900-8
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63358
Tao, Y., & Winkler, M. (2019). A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production. Communications on Pure & Applied Analysis, 18(4), 2047–2067. https://doi.org/10.3934/cpaa.2019092
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63357
Tao, Y., & Winkler, M. (2019). Global smooth solvability of a parabolic–elliptic nutrient taxis system in domains of arbitrary dimension. Journal of Differential Equations, 267(1), 388–406. https://doi.org/10.1016/j.jde.2019.01.014
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63353
Lankeit, J., & Winkler, M. (2019). Facing Low Regularity in Chemotaxis Systems. Jahresbericht Der Deutschen Mathematiker-Vereinigung, 122(1), 35–64. https://doi.org/10.1365/s13291-019-00210-z
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63351
Krzyżanowski, P., Winkler, M., & Wrzosek, D. (2019). Migration-driven benefit in a two-species nutrient taxis system. Nonlinear Analysis: Real World Applications, 48, 94–116. https://doi.org/10.1016/j.nonrwa.2019.01.006
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63362
Winkler, M. (2019). Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation. Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, 36(6), 1747–1790. https://doi.org/10.1016/j.anihpc.2019.02.004
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63363
Winkler, M. (2019). Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions. Mathematical Models and Methods in Applied Sciences, 29(03), 373–418. https://doi.org/10.1142/s021820251950012x
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63366
Winkler, M. (2019). Instantaneous regularization of distributions from<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e19" altimg="si17.gif"><mml:msup><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mo>⋆</mml:mo></mml:mrow></mml:msup><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>in the one-dimensional parabolic Keller–Segel system. Nonlinear Analysis, 183, 102–116. https://doi.org/10.1016/j.na.2019.01.017
LibreCat
| DOI