Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
142 Publications
2020 | Journal Article | LibreCat-ID: 63328
Winkler, Michael. “Boundedness in a Three-Dimensional Keller–Segel–Stokes System with Subcritical Sensitivity.” Applied Mathematics Letters 112 (2020). https://doi.org/10.1016/j.aml.2020.106785.
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 63320
Tao, Youshan, and Michael Winkler. “Critical Mass for Infinite-Time Blow-up in a Haptotaxis System with Nonlinear Zero-Order Interaction.” Discrete & Continuous Dynamical Systems - A 41, no. 1 (2020): 439–54. https://doi.org/10.3934/dcds.2020216.
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 63335
Winkler, Michael. “Small-Mass Solutions in the Two-Dimensional Keller--Segel System Coupled to the Navier--Stokes Equations.” SIAM Journal on Mathematical Analysis 52, no. 2 (2020): 2041–80. https://doi.org/10.1137/19m1264199.
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 63318
TAO, YOUSHAN, and Michael Winkler. “A Critical Virus Production Rate for Efficiency of Oncolytic Virotherapy.” European Journal of Applied Mathematics 32, no. 2 (2020): 301–16. https://doi.org/10.1017/s0956792520000133.
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 63314
SURULESCU, CHRISTINA, and Michael Winkler. “Does Indirectness of Signal Production Reduce the Explosion-Supporting Potential in Chemotaxis–Haptotaxis Systems? Global Classical Solvability in a Class of Models for Cancer Invasion (and More).” European Journal of Applied Mathematics 32, no. 4 (2020): 618–51. https://doi.org/10.1017/s0956792520000236.
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 63265
Winkler, Michael. “Approaching Critical Decay in a Strongly Degenerate Parabolic Equation.” Journal of Dynamics and Differential Equations 36, no. S1 (2020): 3–23. https://doi.org/10.1007/s10884-020-09892-x.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63325
Winkler, Michael. “Can Rotational Fluxes Impede the Tendency Toward Spatial Homogeneity in Nutrient Taxis(-Stokes) Systems?” International Mathematics Research Notices 2021, no. 11 (2019): 8106–52. https://doi.org/10.1093/imrn/rnz056.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63337
Winkler, Michael. “The Role of Superlinear Damping in the Construction of Solutions to Drift-Diffusion Problems with Initial Data in L1.” Advances in Nonlinear Analysis 9, no. 1 (2019): 526–66. https://doi.org/10.1515/anona-2020-0013.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63334
Tao, Youshan, and Michael Winkler. “Global Classical Solutions to a Doubly Haptotactic Cross-Diffusion System Modeling Oncolytic Virotherapy.” Journal of Differential Equations 268, no. 9 (2019): 4973–97. https://doi.org/10.1016/j.jde.2019.10.046.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63349
Bellomo, Nicola, Kevin J. Painter, Youshan Tao, and Michael Winkler. “Occurrence vs. Absence of Taxis-Driven Instabilities in a May--Nowak Model for Virus Infection.” SIAM Journal on Applied Mathematics 79, no. 5 (2019): 1990–2010. https://doi.org/10.1137/19m1250261.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63355
Tao, Youshan, and Michael Winkler. “Boundedness and Stabilization in a Population Model with Cross‐diffusion for One Species.” Proceedings of the London Mathematical Society 119, no. 6 (2019): 1598–1632. https://doi.org/10.1112/plms.12276.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63356
Tao, Youshan, and Michael Winkler. “Large Time Behavior in a Forager–Exploiter Model with Different Taxis Strategies for Two Groups in Search of Food.” Mathematical Models and Methods in Applied Sciences 29, no. 11 (2019): 2151–82. https://doi.org/10.1142/s021820251950043x.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63352
Lankeit, Johannes, and Michael Winkler. “Counterintuitive Dependence of Temporal Asymptotics on Initial Decay in a Nonlocal Degenerate Parabolic Equation Arising in Game Theory.” Israel Journal of Mathematics 233, no. 1 (2019): 249–96. https://doi.org/10.1007/s11856-019-1900-8.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63358
Tao, Youshan, and Michael Winkler. “A Chemotaxis-Haptotaxis System with Haptoattractant Remodeling: Boundedness Enforced by Mild Saturation of Signal Production.” Communications on Pure & Applied Analysis 18, no. 4 (2019): 2047–67. https://doi.org/10.3934/cpaa.2019092.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63357
Tao, Youshan, and Michael Winkler. “Global Smooth Solvability of a Parabolic–Elliptic Nutrient Taxis System in Domains of Arbitrary Dimension.” Journal of Differential Equations 267, no. 1 (2019): 388–406. https://doi.org/10.1016/j.jde.2019.01.014.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63353
Lankeit, Johannes, and Michael Winkler. “Facing Low Regularity in Chemotaxis Systems.” Jahresbericht Der Deutschen Mathematiker-Vereinigung 122, no. 1 (2019): 35–64. https://doi.org/10.1365/s13291-019-00210-z.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63351
Krzyżanowski, Piotr, Michael Winkler, and Dariusz Wrzosek. “Migration-Driven Benefit in a Two-Species Nutrient Taxis System.” Nonlinear Analysis: Real World Applications 48 (2019): 94–116. https://doi.org/10.1016/j.nonrwa.2019.01.006.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63362
Winkler, Michael. “Global Solvability and Stabilization in a Two-Dimensional Cross-Diffusion System Modeling Urban Crime Propagation.” Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire 36, no. 6 (2019): 1747–90. https://doi.org/10.1016/j.anihpc.2019.02.004.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63363
Winkler, Michael. “Global Generalized Solutions to a Multi-Dimensional Doubly Tactic Resource Consumption Model Accounting for Social Interactions.” Mathematical Models and Methods in Applied Sciences 29, no. 03 (2019): 373–418. https://doi.org/10.1142/s021820251950012x.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63366
Winkler, Michael. “Instantaneous Regularization of Distributions From<mml:Math Xmlns:Mml="http://Www.W3.Org/1998/Math/MathML" Display="inline" Overflow="scroll" Id="d1e19" Altimg="si17.Gif"><mml:Msup><mml:Mrow><mml:Mrow><mml:Mo>(</Mml:Mo><mml:Msup><mml:Mrow><mml:Mi>C</Mml:Mi></Mml:Mrow><mml:Mrow><mml:Mn>0</Mml:Mn></Mml:Mrow></Mml:Msup><mml:Mo>)</Mml:Mo></Mml:Mrow></Mml:Mrow><mml:Mrow><mml:Mo>⋆</Mml:Mo></Mml:Mrow></Mml:Msup><mml:Mo>×</Mml:Mo><mml:Msup><mml:Mrow><mml:Mi>L</Mml:Mi></Mml:Mrow><mml:Mrow><mml:Mn>2</Mml:Mn></Mml:Mrow></Mml:Msup></Mml:Math>in the One-Dimensional Parabolic Keller–Segel System.” Nonlinear Analysis 183 (2019): 102–16. https://doi.org/10.1016/j.na.2019.01.017.
LibreCat
| DOI