Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
17 Publications
2019 | Conference Paper | LibreCat-ID: 15794 |

Ebbers, J., & Haeb-Umbach, R. (2019). Convolutional Recurrent Neural Network and Data Augmentation for Audio Tagging with Noisy Labels and Minimal Supervision. DCASE2019 Workshop, New York, USA.
LibreCat
| Files available
2019 | Conference Paper | LibreCat-ID: 15796 |

Ebbers, J., Drude, L., Haeb-Umbach, R., Brendel, A., & Kellermann, W. (2019). Weakly Supervised Sound Activity Detection and Event Classification in Acoustic Sensor Networks. CAMSAP 2019, Guadeloupe, West Indies.
LibreCat
| Files available
2019 | Conference Paper | LibreCat-ID: 15792 |

Nelus, A., Ebbers, J., Haeb-Umbach, R., & Martin, R. (2019). Privacy-preserving Variational Information Feature Extraction for Domestic Activity Monitoring Versus Speaker Identification. INTERSPEECH 2019, Graz, Austria.
LibreCat
| Files available
2018 | Conference Paper | LibreCat-ID: 11760 |

Ebbers, J., Nelus, A., Martin, R., & Haeb-Umbach, R. (2018). Evaluation of Modulation-MFCC Features and DNN Classification for Acoustic Event Detection. In DAGA 2018, München.
LibreCat
| Download (ext.)
2018 | Conference Paper | LibreCat-ID: 11907 |

Glarner, T., Hanebrink, P., Ebbers, J., & Haeb-Umbach, R. (2018). Full Bayesian Hidden Markov Model Variational Autoencoder for Acoustic Unit Discovery. INTERSPEECH 2018, Hyderabad, India.
LibreCat
| Files available
| Download (ext.)
2018 | Conference Paper | LibreCat-ID: 11836 |

Ebbers, J., Heitkaemper, J., Schmalenstroeer, J., & Haeb-Umbach, R. (2018). Benchmarking Neural Network Architectures for Acoustic Sensor Networks. ITG 2018, Oldenburg, Germany.
LibreCat
| Files available
| Download (ext.)
2017 | Conference Paper | LibreCat-ID: 11759 |

Ebbers, J., Heymann, J., Drude, L., Glarner, T., Haeb-Umbach, R., & Raj, B. (2017). Hidden Markov Model Variational Autoencoder for Acoustic Unit Discovery. INTERSPEECH 2017, Stockholm, Schweden.
LibreCat
| Files available
| Download (ext.)