Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

43 Publications


2024 | Journal Article | LibreCat-ID: 52723 | OA
Meyer MT, Schindlmayr A. Derivation of Miller’s rule for the nonlinear optical susceptibility of a quantum anharmonic oscillator. Journal of Physics B: Atomic, Molecular and Optical Physics. 2024;57(9). doi:10.1088/1361-6455/ad369c
LibreCat | Files available | DOI | WoS
 

2022 | Book Chapter | LibreCat-ID: 30288
Schmidt F, Kozub AL, Gerstmann U, Schmidt WG, Schindlmayr A. Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response. In: Corradi G, Kovács L, eds. New Trends in Lithium Niobate: From Bulk to Nanocrystals. MDPI; 2022:231-248. doi:10.3390/books978-3-0365-3339-1
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 26627 | OA
Neufeld S, Schindlmayr A, Schmidt WG. Quasiparticle energies and optical response of RbTiOPO4 and KTiOAsO4. Journal of Physics: Materials. 2022;5(1). doi:10.1088/2515-7639/ac3384
LibreCat | Files available | DOI | WoS
 

2022 | Book Chapter | LibreCat-ID: 29808
Schindlmayr A. Programmierung und Computersimulationen. In: Gerick J, Sommer A, Zimmermann G, eds. Kompetent Prüfungen gestalten: 60 Prüfungsformate für die Hochschullehre. 2nd ed. Waxmann; 2022:270-274. doi:10.36198/9783838558592
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 44088 | OA
Schmidt F, Kozub AL, Gerstmann U, Schmidt WG, Schindlmayr A. A density-functional theory study of hole and defect-bound exciton polarons in lithium niobate. Crystals. 2022;12(11). doi:10.3390/cryst12111586
LibreCat | Files available | DOI | WoS
 

2021 | Journal Article | LibreCat-ID: 21946 | OA
Schmidt F, Kozub AL, Gerstmann U, Schmidt WG, Schindlmayr A. Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response. Crystals. 2021;11:542. doi:10.3390/cryst11050542
LibreCat | Files available | DOI | WoS
 

2021 | Journal Article | LibreCat-ID: 22960 | OA
Bidaraguppe Ramesh N, Schmidt F, Schindlmayr A. Lattice parameters and electronic band gap of orthorhombic potassium sodium niobate K0.5Na0.5NbO3 from density-functional theory. The European Physical Journal B. 2021;94(8). doi:10.1140/epjb/s10051-021-00179-8
LibreCat | Files available | DOI | WoS
 

2021 | Journal Article | LibreCat-ID: 22761 | OA
Friedrich C, Blügel S, Schindlmayr A. Erratum: Efficient implementation of the GW approximation within the all-electron FLAPW method [Phys. Rev. B 81, 125102 (2010)]. Physical Review B. 2021;104(3). doi:10.1103/PhysRevB.104.039901
LibreCat | Files available | DOI | WoS
 

2021 | Journal Article | LibreCat-ID: 23418 | OA
Kozub AL, Schindlmayr A, Gerstmann U, Schmidt WG. Polaronic enhancement of second-harmonic generation in lithium niobate. Physical Review B. 2021;104:174110. doi:10.1103/PhysRevB.104.174110
LibreCat | Files available | DOI | WoS | arXiv
 

2020 | Journal Article | LibreCat-ID: 19190 | OA
Schmidt F, Kozub AL, Biktagirov T, et al. Free and defect-bound (bi)polarons in LiNbO3: Atomic structure and spectroscopic signatures from ab initio calculations. Physical Review Research. 2020;2(4). doi:10.1103/PhysRevResearch.2.043002
LibreCat | Files available | DOI | WoS
 

2019 | Journal Article | LibreCat-ID: 10014 | OA
Schmidt F, Riefer A, Schmidt WG, et al. Quasiparticle and excitonic effects in the optical response of KNbO3. Physical Review Materials. 2019;3(5). doi:10.1103/PhysRevMaterials.3.054401
LibreCat | Files available | DOI | WoS
 

2019 | Journal Article | LibreCat-ID: 13365 | OA
Neufeld S, Bocchini A, Gerstmann U, Schindlmayr A, Schmidt WG. Potassium titanyl phosphate (KTP) quasiparticle energies and optical response. Journal of Physics: Materials. 2019;2:045003. doi:10.1088/2515-7639/ab29ba
LibreCat | Files available | DOI | WoS
 

2018 | Journal Article | LibreCat-ID: 18466 | OA
Schindlmayr A. Exact formulation of the transverse dynamic spin susceptibility as an initial-value problem. Advances in Mathematical Physics. 2018;2018. doi:10.1155/2018/3732892
LibreCat | Files available | DOI | WoS
 

2018 | Journal Article | LibreCat-ID: 13410 | OA
Friedrich M, Schmidt WG, Schindlmayr A, Sanna S. Erratum: Optical properties of titanium-doped lithium niobate from time-dependent density-functional theory [Phys. Rev. Materials 1, 034401 (2017)]. Physical Review Materials. 2018;2(1). doi:10.1103/PhysRevMaterials.2.019902
LibreCat | Files available | DOI | WoS
 

2017 | Journal Article | LibreCat-ID: 7481
Riefer A, Weber N, Mund J, et al. Zn–VI quasiparticle gaps and optical spectra from many-body calculations. Journal of Physics: Condensed Matter. 2017;29(21). doi:10.1088/1361-648x/aa6b2a
LibreCat | Files available | DOI | WoS | PubMed | Europe PMC
 

2017 | Journal Article | LibreCat-ID: 13416 | OA
Friedrich M, Schmidt WG, Schindlmayr A, Sanna S. Polaron optical absorption in congruent lithium niobate from time-dependent density-functional theory. Physical Review Materials. 2017;1(5). doi:10.1103/PhysRevMaterials.1.054406
LibreCat | Files available | DOI | WoS
 

2017 | Journal Article | LibreCat-ID: 10021 | OA
Friedrich M, Schmidt WG, Schindlmayr A, Sanna S. Optical properties of titanium-doped lithium niobate from time-dependent density-functional theory. Physical Review Materials. 2017;1(3). doi:10.1103/PhysRevMaterials.1.034401
LibreCat | Files available | DOI | WoS
 

2017 | Journal Article | LibreCat-ID: 10023 | OA
Schmidt F, Landmann M, Rauls E, et al. Consistent atomic geometries and electronic structure of five phases of potassium niobate from density-functional theory. Advances in Materials Science and Engineering. 2017;2017. doi:10.1155/2017/3981317
LibreCat | Files available | DOI | WoS
 

2016 | Journal Article | LibreCat-ID: 10024 | OA
Riefer A, Friedrich M, Sanna S, Gerstmann U, Schindlmayr A, Schmidt WG. LiNbO3 electronic structure: Many-body interactions, spin-orbit coupling, and thermal effects. Physical Review B. 2016;93(7). doi:10.1103/PhysRevB.93.075205
LibreCat | Files available | DOI | WoS
 

2016 | Journal Article | LibreCat-ID: 10025
Friedrich M, Schindlmayr A, Schmidt WG, Sanna S. LiTaO3 phonon dispersion and ferroelectric transition calculated from first principles. Physica Status Solidi B. 2016;253(4):683-689. doi:10.1002/pssb.201552576
LibreCat | Files available | DOI | WoS
 

2015 | Journal Article | LibreCat-ID: 10030
Friedrich M, Riefer A, Sanna S, Schmidt WG, Schindlmayr A. Phonon dispersion and zero-point renormalization of LiNbO3 from density-functional perturbation theory. Journal of Physics: Condensed Matter. 2015;27(38). doi:10.1088/0953-8984/27/38/385402
LibreCat | Files available | DOI | WoS | PubMed | Europe PMC
 

2015 | Journal Article | LibreCat-ID: 18470 | OA
Bouhassoune M, Schindlmayr A. Ab initio study of strain effects on the quasiparticle bands and effective masses in silicon. Advances in Condensed Matter Physics. 2015;2015. doi:10.1155/2015/453125
LibreCat | Files available | DOI | WoS
 

2014 | Book Chapter | LibreCat-ID: 18471
Friedrich C, Şaşıoğlu E, Müller M, Schindlmayr A, Blügel S. Spin excitations in solids from many-body perturbation theory. In: Di Valentin C, Botti S, Cococcioni M, eds. First Principles Approaches to Spectroscopic Properties of Complex Materials. Vol 347. Topics in Current Chemistry. Berlin, Heidelberg: Springer; 2014:259-301. doi:10.1007/128_2013_518
LibreCat | Files available | DOI | WoS | PubMed | Europe PMC
 

2014 | Book Chapter | LibreCat-ID: 18472
Schindlmayr A. The GW approximation for the electronic self-energy. In: Bach V, Delle Site L, eds. Many-Electron Approaches in Physics, Chemistry and Mathematics. Vol 29. Mathematical Physics Studies. Cham: Springer; 2014:343-357. doi:10.1007/978-3-319-06379-9_19
LibreCat | Files available | DOI
 

2014 | Journal Article | LibreCat-ID: 18473
Yanagisawa S, Morikawa Y, Schindlmayr A. Theoretical investigation of the band structure of picene single crystals within the GW approximation. Japanese Journal of Applied Physics. 2014;53(5S1). doi:10.7567/jjap.53.05fy02
LibreCat | Files available | DOI | WoS
 

2014 | Book Chapter | LibreCat-ID: 18474 | OA
Friedrich C, Schindlmayr A. Many-body perturbation theory: The GW approximation. In: Blügel S, Helbig N, Meden V, Wortmann D, eds. Computing Solids: Models, Ab Initio Methods and Supercomputing. Vol 74. Key Technologies. Jülich: Forschungszentrum Jülich; 2014:A4.1-A4.21.
LibreCat | Files available | Download (ext.)
 

2013 | Book Chapter | LibreCat-ID: 18475
Riefer A, Rohrmüller M, Landmann M, et al. Lithium niobate dielectric function and second-order polarizability tensor from massively parallel ab initio calculations. In: Nagel WE, Kröner DH, Resch MM, eds. High Performance Computing in Science and Engineering ‘13. Transactions of the High Performance Computing Center, Stuttgart. Cham: Springer; 2013:93-104. doi:10.1007/978-3-319-02165-2_8
LibreCat | Files available | DOI | WoS
 

2013 | Journal Article | LibreCat-ID: 18476 | OA
Yanagisawa S, Morikawa Y, Schindlmayr A. HOMO band dispersion of crystalline rubrene: Effects of self-energy corrections within the GW approximation. Physical Review B. 2013;88(11). doi:10.1103/PhysRevB.88.115438
LibreCat | Files available | DOI | WoS
 

2013 | Journal Article | LibreCat-ID: 13525 | OA
Riefer A, Sanna S, Schindlmayr A, Schmidt WG. Optical response of stoichiometric and congruent lithium niobate from first-principles calculations. Physical Review B. 2013;87(19). doi:10.1103/PhysRevB.87.195208
LibreCat | Files available | DOI | WoS
 

2013 | Journal Article | LibreCat-ID: 18479 | OA
Schindlmayr A. Analytic evaluation of the electronic self-energy in the GW approximation for two electrons on a sphere. Physical Review B. 2013;87(7). doi:10.1103/PhysRevB.87.075104
LibreCat | Files available | DOI | WoS | arXiv
 

2012 | Journal Article | LibreCat-ID: 18542
Friedrich C, Betzinger M, Schlipf M, Blügel S, Schindlmayr A. Hybrid functionals and GW approximation in the FLAPW method. Journal of Physics: Condensed Matter. 2012;24(29). doi:10.1088/0953-8984/24/29/293201
LibreCat | Files available | DOI | WoS | PubMed | Europe PMC
 

2011 | Journal Article | LibreCat-ID: 4091
Wand M, Schindlmayr A, Meier T, Förstner J. Simulation of the ultrafast nonlinear optical response of metal slabs. Physica Status Solidi B. 2011;248(4):887-891. doi:10.1002/pssb.201001219
LibreCat | Files available | DOI | WoS
 

2011 | Conference Paper | LibreCat-ID: 4048
Wand M, Schindlmayr A, Meier T, Förstner J. Theoretical approach to the ultrafast nonlinear optical response of metal slabs. In: CLEO:2011 - Laser Applications to Photonic Applications . OSA Technical Digest. Optical Society of America; 2011. doi:10.1364/CLEO_AT.2011.JTuI59
LibreCat | Files available | DOI | WoS
 

2010 | Book Chapter | LibreCat-ID: 18549
Schindlmayr A, Friedrich C, Şaşıoğlu E, Blügel S. First-principles calculation of electronic excitations in solids with SPEX. In: Dolg FM, ed. Modern and Universal First-Principles Methods for Many-Electron Systems in Chemistry and Physics. Vol 3. Progress in Physical Chemistry. München: Oldenbourg; 2010:67-78. doi:10.1524/9783486711639.67
LibreCat | DOI
 

2010 | Journal Article | LibreCat-ID: 18562
Bouhassoune M, Schindlmayr A. Electronic structure and effective masses in strained silicon. Physica Status Solidi C. 2010;7(2):460-463. doi:10.1002/pssc.200982470
LibreCat | Files available | DOI | WoS
 

2010 | Journal Article | LibreCat-ID: 13573
Thierfelder C, Sanna S, Schindlmayr A, Schmidt WG. Do we know the band gap of lithium niobate? Physica Status Solidi C. 2010;7(2):362-365. doi:10.1002/pssc.200982473
LibreCat | Files available | DOI | WoS
 

2010 | Journal Article | LibreCat-ID: 18560 | OA
Şaşıoğlu E, Schindlmayr A, Friedrich C, Freimuth F, Blügel S. Wannier-function approach to spin excitations in solids. Physical Review B. 2010;81(5). doi:10.1103/PhysRevB.81.054434
LibreCat | Files available | DOI | WoS | arXiv
 

2010 | Journal Article | LibreCat-ID: 18557
Schindlmayr A, Friedrich C, Şaşıoğlu E, Blügel S. First-principles calculation of electronic excitations in solids with SPEX. Zeitschrift für Physikalische Chemie. 2010;224(3-4):357-368. doi:10.1524/zpch.2010.6110
LibreCat | Files available | DOI | WoS | arXiv
 

2010 | Journal Article | LibreCat-ID: 18558 | OA
Friedrich C, Blügel S, Schindlmayr A. Efficient implementation of the GW approximation within the all-electron FLAPW method. Physical Review B. 2010;81(12). doi:10.1103/PhysRevB.81.125102
LibreCat | Files available | DOI | WoS | arXiv
 

2009 | Journal Article | LibreCat-ID: 18632 | OA
Feste SF, Schäpers T, Buca D, et al. Measurement of effective electron mass in biaxial tensile strained silicon on insulator. Applied Physics Letters. 2009;95(18). doi:10.1063/1.3254330
LibreCat | Files available | DOI | WoS
 

2009 | Conference Paper | LibreCat-ID: 18634 | OA
Schindlmayr A. Optical conductivity of metals from first principles. In: Chigrin DN, ed. Theoretical and Computational Nanophotonics: Proceedings of the 2nd International Workshop. Vol 1176. AIP Conference Proceedings. American Institute of Physics; 2009:157-159. doi:10.1063/1.3253897
LibreCat | Files available | DOI | WoS | arXiv
 

2009 | Journal Article | LibreCat-ID: 18636
Friedrich C, Schindlmayr A, Blügel S. Efficient calculation of the Coulomb matrix and its expansion around k=0 within the FLAPW method. Computer Physics Communications. 2009;180(3):347-359. doi:10.1016/j.cpc.2008.10.009
LibreCat | Files available | DOI | WoS | arXiv
 

2008 | Journal Article | LibreCat-ID: 18564 | OA
Freysoldt C, Eggert P, Rinke P, Schindlmayr A, Scheffler M. Screening in two dimensions: GW calculations for surfaces and thin films using the repeated-slab approach. Physical Review B. 2008;77(23). doi:10.1103/PhysRevB.77.235428
LibreCat | Files available | DOI | WoS | arXiv
 

Filters and Search Terms

department=296

Search

Filter Publications

Display / Sort

Citation Style: AMA

Export / Embed