Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

134 Publications


2019 | Conference Paper | LibreCat-ID: 10232
Wever MD, Mohr F, Tornede A, Hüllermeier E. Automating Multi-Label Classification Extending ML-Plan. In: ; 2019.
LibreCat | Files available
 

2019 | Conference Abstract | LibreCat-ID: 8956
Hetzer A, Wever MD, Mohr F, Hüllermeier E. Algorithm Selection as Recommendation: From Collaborative Filtering to Dyad Ranking. In: ; 2019.
LibreCat | Files available
 

2019 | Conference Abstract | LibreCat-ID: 8868
Wever MD, Mohr F, Hüllermeier E, Hetzer A. Towards Automated Machine Learning for Multi-Label Classification. In: ; 2019.
LibreCat | Files available
 

2019 | Conference Abstract | LibreCat-ID: 13132
Mohr F, Wever MD, Tornede A, Hüllermeier E. From Automated to On-The-Fly Machine Learning. In: INFORMATIK 2019: 50 Jahre Gesellschaft Für Informatik – Informatik Für Gesellschaft. INFORMATIK 2019, Lecture Notes in Informatics (LNI), Gesellschaft für Informatik. Bonn: Gesellschaft für Informatik e.V.; 2019:273-274.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10184
Schäfer D, Hüllermeier E. Preference-Based Reinforcement Learning Using Dyad Ranking. In: Proc. 21st Int. Conference on Discovery Science (DS). ; 2018:161-175.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 3852
Wever MD, Mohr F, Hüllermeier E. ML-Plan for Unlimited-Length Machine Learning Pipelines. In: ICML 2018 AutoML Workshop. ; 2018.
LibreCat | Files available | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 2479
Mohr F, Wever MD, Hüllermeier E, Faez A. (WIP) Towards the Automated Composition of Machine Learning Services. In: SCC. San Francisco, CA, USA: IEEE; 2018. doi:10.1109/SCC.2018.00039
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 10153
Mohr F, Wever MD, Hüllermeier E. Reduction Stumps for Multi-class Classification. In: Proc. 17th Int. Symposium on Intelligent Data Analysis (IDA). ; 2018:225-237.
LibreCat
 

2018 | Bachelorsthesis | LibreCat-ID: 5936
Scheibl M. Learning about Learning Curves from Dataset Properties.; 2018.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10185
Seemann N, Geierhos M, Merten M-L, Tophinke D, Wever MD, Hüllermeier E. Supporting the Cognitive Process in Annotation Tasks. In: Postersession Computerlinguistik Der 40. Jahrestagung Der Deutschen Gesellschaft Für Sprachwissenschaft. ; 2018.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10154
Mohr F, Wever MD, Hüllermeier E, Faez A. (WIP) Towards the Automated Composition of Machine Learning Services. In: Proc. 15th Int. Conference on Services Computing (SCC). ; 2018:241-244.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10192
Wever MD, Mohr F, Hüllermeier E. ML-Plan for Unlimited-Length Machine Learning Pipelines. In: Int. Workshop on Automatic Machine Learning (AutoML) at ICML 2018. ; 2018.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 10274
Melnikov V, Hüllermeier E. On the effectiveness of heuristics for learning nested dichotomies: an empirial analysis. Machine Learning. 2018;107(8-10):1537-1560.
LibreCat
 

2018 | Conference (Editor) | LibreCat-ID: 10591
Abiteboul S, Arenas M, Barceló P, et al., eds. Research Directions for Principles of Data Management. Vol 7.; 2018:1-29.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10181
Nguyen V-L, Destercke S, Masson M-H, Hüllermeier E. Reliable Multi-class Classification based on Pairwise Epistemic and Aleatoric Uncertainty. In: Proc. 27th Int.Joint Conference on Artificial Intelligence (IJCAI). ; 2018:5089-5095.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2109
Wever MD, Mohr F, Hüllermeier E. Ensembles of Evolved Nested Dichotomies for Classification. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018. Kyoto, Japan: ACM; 2018. doi:10.1145/3205455.3205562
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 2471
Mohr F, Wever MD, Hüllermeier E. On-The-Fly Service Construction with Prototypes. In: SCC. San Francisco, CA, USA: IEEE Computer Society; 2018. doi:10.1109/SCC.2018.00036
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Book Chapter | LibreCat-ID: 6423
Schäfer D, Hüllermeier E. Preference-Based Reinforcement Learning Using Dyad Ranking. In: Discovery Science. Cham: Springer International Publishing; 2018:161-175. doi:10.1007/978-3-030-01771-2_11
LibreCat | Files available | DOI
 

2018 | Conference Paper | LibreCat-ID: 10148
El Mesaoudi-Paul A, Hüllermeier E, Busa-Fekete R. Ranking Distributions based on  Noisy Sorting. In: Proc. 35th Int. Conference on Machine Learning (ICML). ; 2018:3469-3477.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 3552
Mohr F, Wever MD, Hüllermeier E. Reduction Stumps for Multi-Class Classification. In: Proceedings of the Symposium on Intelligent Data Analysis. ‘s-Hertogenbosch, the Netherlands. doi:10.1007/978-3-030-01768-2_19
LibreCat | Files available | DOI | Download (ext.)
 

Filters and Search Terms

department=355

Search

Filter Publications

Display / Sort

Citation Style: AMA

Export / Embed